<div>Abstract<p>The effectiveness of radiotherapy treatment could be significantly improved if tumor cells could be rendered more sensitive to ionizing radiation (IR) without altering the sensitivity of normal tissues. However, many of the key therapeutically exploitable mechanisms that determine intrinsic tumor radiosensitivity are largely unknown. We have conducted a small interfering RNA (siRNA) screen of 200 genes involved in DNA damage repair aimed at identifying genes whose knockdown increased tumor radiosensitivity. Parallel siRNA screens were conducted in irradiated and unirradiated tumor cells (SQ20B) and irradiated normal tissue cells (MRC5). Using γH2AX foci at 24 hours after IR, we identified several genes, such as <i>BRCA2, Lig IV</i>, and <i>XRCC5</i>, whose knockdown is known to cause increased cell radiosensitivity, thereby validating the primary screening end point. In addition, we identified POLQ (DNA polymerase θ) as a potential tumor-specific target. Subsequent investigations showed that <i>POLQ</i> knockdown resulted in radiosensitization of a panel of tumor cell lines from different primary sites while having little or no effect on normal tissue cell lines. These findings raise the possibility that POLQ inhibition might be used clinically to cause tumor-specific radiosensitization. Cancer Res; 70(7); 2984–93</p></div>
<div>Abstract<p>The phosphatidylinositol 3-kinase (PI3K)/Akt pathway can increase vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF-1α) expression. We examined the effect of nelfinavir, an HIV protease inhibitor that inhibits Akt signaling, on VEGF and HIF-1α expression and on angiogenesis, tumor oxygenation, and radiosensitization. Nelfinavir decreases VEGF expression under normoxia via the transcription factor Sp1, which regulates the proximal core VEGF promoter. Nelfinavir decreased Sp1 phosphorylation and decreased Sp1 binding to a probe corresponding to the proximal VEGF promoter in a gel shift assay. Nelfinavir also decreased the hypoxic induction of HIF-1α, which also regulates the VEGF promoter, most likely by decreasing its translation. The effect of nelfinavir on VEGF expression had the functional consequence of decreasing angiogenesis in an <i>in vivo</i> Matrigel plug assay. To determine the effect this might have on tumor radiosensitization, we did tumor regrowth assays with xenografts in nude mice. The combination of nelfinavir and radiation increased time to regrowth compared with radiation alone whereas nelfinavir alone had little effect on tumor regrowth. This radiosensitizing effect was greater than suggested by <i>in vitro</i> clonogenic survival assays. One possible explanation for the discordance is that nelfinavir has an effect on tumor oxygenation. Therefore, we examined this with the hypoxia marker EF5 and found that nelfinavir leads to increased oxygenation within tumor xenografts. Our results suggest that nelfinavir decreases HIF-1α/VEGF expression and tumor hypoxia, which could play a role in its <i>in vivo</i> radiosensitizing effect. These data support the use of nelfinavir in combination with radiation in future clinical trials. (Cancer Res 2006; 66(18): 9252-9)</p></div>
<div>Abstract<p>The phosphatidylinositol 3-kinase (PI3K)/Akt pathway can increase vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1α (HIF-1α) expression. We examined the effect of nelfinavir, an HIV protease inhibitor that inhibits Akt signaling, on VEGF and HIF-1α expression and on angiogenesis, tumor oxygenation, and radiosensitization. Nelfinavir decreases VEGF expression under normoxia via the transcription factor Sp1, which regulates the proximal core VEGF promoter. Nelfinavir decreased Sp1 phosphorylation and decreased Sp1 binding to a probe corresponding to the proximal VEGF promoter in a gel shift assay. Nelfinavir also decreased the hypoxic induction of HIF-1α, which also regulates the VEGF promoter, most likely by decreasing its translation. The effect of nelfinavir on VEGF expression had the functional consequence of decreasing angiogenesis in an <i>in vivo</i> Matrigel plug assay. To determine the effect this might have on tumor radiosensitization, we did tumor regrowth assays with xenografts in nude mice. The combination of nelfinavir and radiation increased time to regrowth compared with radiation alone whereas nelfinavir alone had little effect on tumor regrowth. This radiosensitizing effect was greater than suggested by <i>in vitro</i> clonogenic survival assays. One possible explanation for the discordance is that nelfinavir has an effect on tumor oxygenation. Therefore, we examined this with the hypoxia marker EF5 and found that nelfinavir leads to increased oxygenation within tumor xenografts. Our results suggest that nelfinavir decreases HIF-1α/VEGF expression and tumor hypoxia, which could play a role in its <i>in vivo</i> radiosensitizing effect. These data support the use of nelfinavir in combination with radiation in future clinical trials. (Cancer Res 2006; 66(18): 9252-9)</p></div>
Abstract Many inhibitors of the epidermal growth factor receptor (EGFR)-RAS-phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway are in clinical use or under development for cancer therapy. Here, we show that treatment of mice bearing human tumor xenografts with inhibitors that block EGFR, RAS, PI3K, or AKT resulted in prolonged and durable enhancement of tumor vascular flow, perfusion, and decreased tumor hypoxia. The vessels in the treated tumors had decreased tortuosity and increased internodal length accounting for the functional alterations. Inhibition of tumor growth cannot account for these results, as the drugs were given at doses that did not alter tumor growth. The tumor cell itself was an essential target, as HT1080 tumors that lack EGFR did not respond to an EGFR inhibitor but did respond with vascular alterations to RAS or PI3K inhibition. We extended these observations to spontaneously arising tumors in MMTV-neu mice. These tumors also responded to PI3K inhibition with decreased tumor hypoxia, increased vascular flow, and morphologic alterations of their vessels, including increased vascular maturity and acquisition of pericyte markers. These changes are similar to the vascular normalization that has been described after the antiangiogenic treatment of xenografts. One difficulty in the use of vascular normalization as a therapeutic strategy has been its limited duration. In contrast, blocking tumor cell RAS-PI3K-AKT signaling led to persistent vascular changes that might be incorporated into clinical strategies based on improvement of vascular flow or decreased hypoxia. These results indicate that vascular alterations must be considered as a consequence of signaling inhibition in cancer therapy. [Cancer Res 2009;69(15):6347–54]
This report presents the results of an investigation designed to establish whether exposure of mice to ultraviolet radiation (UVR) is capable of influencing the factors that control the distribution of lymphoid cells in vivo. We found that such exposure resulted in a dramatic and long-lasting increase in the tropism of peripheral lymph nodes for circulating lymphoid cells. Termination of UVR exposure did not result in a reversal of this phenomenon. Since an increase in lymphocyte migration into the lymph nodes of UVR-exposed mice was apparent within 2 hr of infusion of the radiolabeled cells, we conclude that the homing assay data reflect a relatively increased binding of circulating lymphocytes to high endothelial venules (HEV) within the lymph nodes of irradiated animals. A histologic analysis of skin from UVR-exposed mice established that the dermal microvasculature had expanded in terms of size and number of vessels, a condition that also does not completely reverse after the termination of treatments. In spite of the increase in dermal microvasculature, very few inflammatory cells were detected in the irradiated skin site. These observations support our conclusion that the enhanced traffic of lymphocytes into peripheral lymph nodes of UVR-exposed mice occurs primarily via lymphocyte-HEV interactions rather than afferent drainage of the irradiated skin.
Treatment of mammalian cells with 1,25-dihydroxyvitamin D3 (1,25D3) produces a G1 to S (G1/S) phase cell cycle block. In addition, it has been noted that a smaller proportion of cells accumulates in the G2/M compartment in 1,25D3-treated cultures. Since cyclins have a major influence on the regulation of cell cycle progression, we determined the expression of cyclins A and B as markers of the G2 phase and of cyclin E as the marker of G1/S transition. No increase in the steady-state levels of cyclin A or cyclin B mRNA was detected in the total cell population or in the cyclin B1 protein in the G2/M cell cycle compartment. In contrast, immunodetectable cyclin E protein was increased in cell cultures as a whole and specifically in the G2/M compartment cells. Determination of BrdU incorporation into DNA by flow cytometry showed marked inhibition of DNA replication in cells with DNA content higher than 4C, and autoradiography of 3H-TdR-pulsed cells showed that polynucleated cells did not replicate DNA after 96 h of treatment with 1,25D3 or analogs. Taken together, these experiments show that at least a portion of the G2/M compartment in 1,25D3-arrested cultures of HL60 cells represents G1 cells at a higher ploidy level, which are blocked from entering the high ploidy S phase.