Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the cardiac myosin binding protein-C (cMyBP-C) encoding gene MYBPC3. In the Netherlands, approximately 25% of patients carry the MYBPC3
ABSTRACT The 14q32 locus is an imprinted region in the human genome which contains multiple non-coding RNAs. We investigated the role of the long non-coding RNA maternally expressed gene 8 (MEG8) in endothelial function and its underlying mechanism. A 5-fold increase in MEG8 was observed with increased passage number in human umbilical vein endothelial cells (HUVECs), suggesting MEG8 is induced during aging. MEG8 knockdown resulted in a 1.8-fold increase in senescence, suggesting MEG8 might be protective during aging. The endothelial barrier was also impaired after MEG8 silencing. MEG8 knockdown resulted in reduced expression of microRNA (miRNA)-370 and -494 but not -127, -487b and -410. Overexpression of miRNA-370 or -494 partially rescued the MEG8-silencing-induced barrier loss. Mechanistically, MEG8 regulates expression of miRNA-370 and -494 at the mature miRNA level through interaction with the RNA-binding proteins cold-inducible RNA-binding protein (CIRBP) and hydroxyacyl-CoA dehydrogenase trifunctional multi-enzyme complex subunit β (HADHB). Mature miRNA-370 and miRNA-494 were found to interact with CIRBP, whereas precursor miRNA-370 and miRNA-494 were found to interact with HADHB. Individual CIRBP and HADHB silencing resulted in downregulation of miRNA-370 and induction of miRNA-494. These results suggest MEG8 interacts with CIRBP and HADHB and contributes to miRNA processing at the post-transcriptional level.
Abstract A large portion of the genome is transcribed into non-coding RNA, which does not encode protein. Many long non-coding RNAs (lncRNAs) have been shown to be involved in important regulatory processes such as genomic imprinting and chromatin modification. The 14q32 locus contains many non-coding RNAs such as Maternally Expressed Gene 8 (MEG8). We observed an induction of this gene in ischemic heart disease. We investigated the role of MEG8 specifically in endothelial function as well as the underlying mechanism. We hypothesized that MEG8 plays an important role in cardiovascular disease via epigenetic regulation of gene expression. Experiments were performed in human umbilical vein endothelial cells (HUVECs). In vitro silencing of MEG8 resulted in impaired angiogenic sprouting. More specifically, total sprout length was reduced as was proliferation, while migration was unaffected. We performed RNA sequencing to assess changes in gene expression after loss of MEG8. The most profoundly regulated gene, Tissue Factor Pathway Inhibitor 2 (TFPI2), was fivefold increased following MEG8 silencing. TFPI2 has previously been described as an inhibitor of angiogenesis. Mechanistically, MEG8 silencing resulted in a reduction of the inhibitory histone modification H3K27me3 at the TFPI2 promoter. Interestingly, additional silencing of TFPI2 partially restored angiogenic sprouting capacity but did not affect proliferation of MEG8 silenced cells. In conclusion, silencing of MEG8 impairs endothelial function, suggesting a potential beneficial role in maintaining cell viability. Our study highlights the MEG8/TFPI2 axis as potential therapeutic approach to improve angiogenesis following ischemia.
Atrial fibrillation (AF) is the most common cardiac arrhythmia. About 5–15% of AF patients have a mutation in a cardiac gene, including mutations in KCNA5, encoding the Kv1.5 α-subunit of the ion channel carrying the atrial-specific ultrarapid delayed rectifier K+ current (IKur). Both loss-of-function and gain-of-function AF-related mutations in KCNA5 are known, but their effects on action potentials (APs) of human cardiomyocytes have been poorly studied. Here, we assessed the effects of wild-type and mutant IKur on APs of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We found that atrial-like hiPSC-CMs, generated by a retinoic acid-based differentiation protocol, have APs with faster repolarization compared to ventricular-like hiPSC-CMs, resulting in shorter APs with a lower AP plateau. Native IKur, measured as current sensitive to 50 µM 4-aminopyridine, was 1.88±0.49 (mean±SEM, n=17) and 0.26±0.26 pA/pF (n=17) in atrial- and ventricular-like hiPSC-CMs, respectively. In both atrial- and ventricular-like hiPSC-CMs, IKur blockade had minimal effects on AP parameters. Next, we used dynamic clamp to inject various amounts of a virtual IKur, with characteristics as in freshly isolated human atrial myocytes, into 11 atrial-like and 10 ventricular-like hiPSC-CMs, in which native IKur was blocked. Injection of IKur with 100% density shortened the APs, with its effect being strongest on the AP duration at 20% repolarization (APD20) of atrial-like hiPSC-CMs. At IKur densities 100%, simulating gain-of-function mutations, APD20 was decreased in both atrial- and ventricular-like hiPSC-CMs, but only upon a strong increase in IKur. In ventricular-like hiPSC-CMs, lowering of the plateau resulted in AP shortening and triangulation. We conclude that a decrease in IKur, mimicking loss-of-function mutations, has a stronger effect on the AP of hiPSC-CMs than an increase, mimicking gain-of-function mutations, whereas in ventricular-like hiPSC-CMs such increase results in AP shortening and triangulation, causing their AP morphology to become more atrial-like. Effects of native IKur modulation on atrial-like hiPSC-CMs are less pronounced than effects of virtual IKur injection because IKur density of atrial-like hiPSC-CMs is substantially smaller than that of freshly isolated human atrial myocytes.
Few immortalized cardiac microvascular endothelial cell (CMEC) lines are available, particularly mouse lines. We purchased the CLU510 mCMEC line (Cedarlane), isolated by fluorescence-activated cell sorting for CD31 and VE-cadherin. The cell line has been used in previous studies, although none report CD31 or VE-cadherin expression. We analyzed endothelial profile of two vials of passage 38 cells. CD31 and VE-cadherin mRNA were hardly expressed in mCMECs compared to primary mouse lung ECs. CD31 and VE-cadherin protein levels were also negligible compared to multiple EC lines. Thus, CLU510 mCMECs beyond P38 do not harbor an endothelial phenotype. Caution should be warranted when using commercial cells and journals should carefully consider the validity of results when essential characterization of cell lines is omitted.
Abstract A large portion of the genome is transcribed into non-coding RNA, which does not encode protein. Many long non-coding RNAs (lncRNAs) have been shown to be involved in important regulatory processes such as genomic imprinting and chromatin modification. The 14q32 locus contains many non-coding RNAs such as Maternally Expressed Gene 8 (MEG8). We observed an induction of this gene in ischemic heart disease. We investigated the role of MEG8 specifically in endothelial function as well as the underlying mechanism. We hypothesized that MEG8 plays an important role in cardiovascular disease via epigenetic regulation of gene expression. Experiments were performed in human umbilical vein endothelial cells (HUVECs). In vitro silencing of MEG8 resulted in impaired angiogenic sprouting. More specifically, total sprout length was reduced as was proliferation, while migration was unaffected. We performed RNA sequencing to assess changes in gene expression after loss of MEG8. The most profoundly regulated gene, Tissue Factor Pathway Inhibitor 2 (TFPI2), was 5-fold increased following MEG8 silencing. TFPI2 has previously been described as an inhibitor of angiogenesis. Mechanistically, MEG8 silencing resulted in a reduction of the inhibitory histone modification H3K27me3 at the TFPI2 promoter. Interestingly, additional silencing of TFPI2 partially restored angiogenic sprouting capacity but did not affect proliferation of MEG8 silenced cells. In conclusion, silencing of MEG8 impairs endothelial function, suggesting a potential beneficial role in maintaining cell viability. Our study highlights the MEG8/TFPI2 axis as potential therapeutic approach to improve angiogenesis following ischemia.