Introduction: This study explores the bioactive properties of extracts obtained from Robin’s pincushion (Diplolepis rosae) collected in Sokobanja, Serbia. Results: Comprehensive in vitro assessments reveal high concentrations of total phenolics (186.37 mg GAE/g), along with significant levels of carotenoids (44.10 μg β-car/g). Robin’s pincushion exhibited superior antioxidant capacities across DPPH, ABTS, and reducing power assays, significantly outperforming comparable extracts from rosehip (Rosa canina) and black rosehip (Rosa spinosissima) in these activities. Additionally, high inhibitory effects were observed in antimicrobial assays, with the extract demonstrating minimal inhibitory concentrations (MIC) as low as 1.56 mg/mL against the Staphylococcus species. Notably, the extract achieved full bactericidal effect within 24 h in time-kill kinetic studies which additionally highlight its potent antistaphylococcal potential. Materials and methods: Analyzing their phytochemical profiles and evaluating their potential as antioxidant, anti-inflammatory, antihyperglycemic, and antimicrobial agents, wide-ranging evaluation of bioactivity of Robin’s pincushion was conducted. Conclusions: These findings highlight Robin’s pincushion as a promising natural source of bioactive compounds with potential applications in traditional and modern medicine for managing oxidative stress, inflammation, hyperglycemia, and microbial infections.
Artificial neural intelligence was established for the estimation, prediction, and optimization of many agricultural and food processes to enable enhanced and balanced utilization of fresh and processed fruits. The predictive capabilities of artificial neural networks (ANNs) are evaluated to estimate the phytochemical composition and the antioxidant and antimicrobial activity of horned melon (Cucumis metuliferus) pulp, peel, and seed. Using multiobjective optimization, the main goals were successively achieved through analysis of antimicrobial potential against sensitive microorganisms for peel (Bacillus cereus, Pseudomonas aeruginosa, Aspergillus brasiliensis, and Penicillium aurantiogriseum), pulp (Salmonella enterica subsp. enterica serotype Typhimurium), and seed samples (Saccharomyces cerevisiae and Candida albicans), and its connection with phytochemical and nutritional composition and antioxidant activity. The highly potent extracts were obtained from peels which represent a waste part with strong antioxidant and antifungal capacity. Briefly, the calculated inhibition zone minimums for sensitive microorganisms were 25.3−30.7 mm, while the optimal results achieved with carotenoids, phenolics, vitamin C, proteins, lipids, DPPH, ABTS, and RP were: 332.01 mg β-car/100 g, 1923.52 mg GAE/100 g, 928.15 mg/100 g, 5.73 g/100 g, 2.3 g/100 g, 226.56 μmol TE/100 g, 8042.55 μmol TE/100 g, and 7526.36 μmol TE/100 g, respectively. These results imply the possibility of using horned melon peel extract as an antioxidant and antifungal agent for food safety and quality.
Strawberry pomace constitutes a promissing source of polyphenolic compounds and possesses notable antioxidant capacity, reducing power and α-glucosidase inhibition potential.
Summary The sequential extraction of Teucrium montanum L. was realised with five solvents of different polarities (70% methanol, petroleum ether, chloroform, ethyl acetate, and n ‐butanol) and HPLC method was used for identification of phenolic compounds. The total phenolic content of the extracts was determined spectrophotometrically according to the Folin–Ciocalteau procedure and range from 0 to 296 mg g −1 . The antioxidant activity of extracts was tested by measuring their ability to scavenge reactive hydroxyl radical during the Fenton reaction, using electron spin resonance (ESR) spectroscopy. Moreover, the influence of these extracts on lipid peroxyl radicals obtained during lipid peroxidation of: (1) sunflower oil (37 °C, 3 h) induced by 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) and (2) liposomes induced by 2,2′‐azobis(2‐amidino‐propane)dihydrochloride (AAPH) was studied. n ‐Butanol extract, because of the highest content of total phenolic compounds (296 mg g −1 ) had the best antioxidant activity (100% at 0.16 mg mL −1 in Fenton reaction system; 90.57% at 5 mg mL −1 in system I; 100% at 5 mg mL −1 in system II).
In this study sour cherry pomace was extracted with food-grade solvent (50% ethanol), concentrated and stabilized in whey and soy proteins by encapsulation. Soy proteins exhibited higher encapsulation efficiency (94.90%), but not significantly (p<0.05), from whey (90.10%). Storage properties of whey (WP) and soy protein (SP) encapsulates in terms of total polyphenols, anthocyanins and antioxidant activity were tested for 6 weeks. At the end of storage period the retention of polyphenols in SP and WP was similar (67.33 and 69.30%, respectively), while the content of anthocyanins has increased in SP (for 47.97%) and decreased in WP (for 1.45%). The decrease in antioxidant activity in SP (12.22%) was lower than in WP (35.04%). Colour parameters of encapsulates have followed the similar trend as anthocyanin change during storage. The technique reported herewith can be used for obtaining quality encapsulates for their use as functional food additives, as a way of fruit waste valorization.