Instant adhesion to wet biological surfaces and reduced swelling of tissue adhesives are crucial for rapid wound closure and hemostasis. However, previous strategies to reduce swelling were always accompanied by a decrease in the tissue bonding strength of the adhesive. Moreover, the irreducibility of the covalent bonds in currently reported adhesives results in the adhesives losing their tissue adhesive ability. To tackle the challenge, a superior anti-swelling coacervate adhesive possessing fast self-healing properties through physical interactions (electrostatic interactions, hydrogen bonding) and chemical crosslinking (Schiff base reaction) was obtained with aldehyde-modified γ-PGA (γ-PGA-CHO), a natural lysozyme (LZM) and an amyloid fiber reduced lysozyme (RLZM). The instant shear adhesion strength and burst pressure tolerance of the adhesive on wet pig intestine reached 50.8 kPa (2.6 times that of CA glue) and 142.5 mmHg (5.9 times that of CA glue), and it maintained an adhesion strength of 37.4 kPa after exposure to the physical environment for 12 h and the swelling rate was only 34.0% underwater. The
We selected six tree species, Pinus massoniana Lamb., Cryptomeria fortunei Hooibr. ex Otto et Dietr., Cunninghamia lanceolata (Lamb.) Hook., Liquidambar formosana Hance, Pinus armandii Franch. and Castanopsis chinensis Hance, which are widely distributed as dominant species in the forest of southern China where acid deposition is becoming more and more serious in recent years. We investigated the effects and potential interactions between simulated acid rain (SiAR) and three calcium (Ca) levels on seed germination, radicle length, seedling growth, chlorophyll content, photosynthesis and Ca content in leaves of these six species. We found that the six species showed different responses to SiAR and different Ca levels. Pinus armandii and C. chinensis were very tolerant to SiAR, whereas the others were more sensitive. The results of significant SiAR × Ca interactions on different physiological parameters of the six species demonstrate that additional Ca had a dramatic rescue effect on the seed germination and seedling growth for the sensitive species under SiAR. Altogether, we conclude that the negative effects of SiAR on seed germination, seedling growth and photosynthesis of the four sensitive species could be ameliorated by Ca addition. In contrast, the physiological processes of the two tolerant species were much less affected by both SiAR and Ca treatments. This conclusion implies that the degree of forest decline caused by long-term acid deposition may be attributed not only to the sensitivity of tree species to acid deposition, but also to the Ca level in the soil.