Owing to existing problems of poor levelness and wet fastness in polyamide fabric dyeing with weak acid dye, reasonable dyeing process was put forward, that is the polyamide fabric was pretreated with chitosan and then dyed with weak acid dye. As a result, with weak acid dye, pH value of dyeing liquor greatly affected the dyeing property; the K/S value increased 90%, from 1.946 up to 3.706; rubbing fastness of both dry and wet reached 5 grade; soaping fastness reached 4 ~ 5 grade; staining fastness of white cloth reached 4 grade.
Manufacturing molecule-based functional elements directly at device interfaces is a frontier in bottom-up materials engineering. A longstanding challenge in the field is the covalent stabilization of pre-assembled molecular architectures to afford nanodevice components. Here, we employ the controlled supramolecular self-assembly of anthracene derivatives on a hexagonal boron nitride sheet, to generate nanographene wires through photo-crosslinking and thermal annealing. Specifically, we demonstrate µm-long nanowires with an average width of 200 nm, electrical conductivities of 106 S m-1 and breakdown current densities of 1011 A m-2. Joint experiments and simulations reveal that hierarchical self-assembly promotes their formation and functional properties. Our approach demonstrates the feasibility of combined bottom-up supramolecular templating and top-down manufacturing protocols for graphene nanomaterials and interconnects, towards integrated carbon nanodevices.
Graphene nanoribbon heterostructures and heterojunctions have attracted interest as next-generation molecular diodes with atomic precision. Their mass production via solution methods and prototypical device integration remains to be explored. Here, the bottom-up solution synthesis and characterization of liquid-phase-processable graphene nanoribbon heterostructures (GNRHs) are demonstrated. Joint photoresponsivity measurements and simulations provide evidence of the structurally defined heterostructure motif acting as a type-I heterojunction. Real-time, time-dependent density functional tight-binding simulations further reveal that the photocurrent polarity can be tuned at different excitation wavelengths. Our results introduce liquid-phase-processable, self-assembled heterojunctions for the development of nanoscale diode circuitry and adaptive hardware.
Nanographene-based magnetism at interfaces offers an avenue to designer quantum materials towards novel phases of matter and atomic-scale applications. Key to spintronics applications at the nanoscale is bistable spin-crossover which however remains to be demonstrated in nanographenes. Here we show that antiaromatic 1,4-disubstituted pyrazine-embedded nanographene derivatives, which promote magnetism through oxidation to a non-aromatic radical are prototypical models for the study of carbon-based thermal spin-crossover. Scanning tunneling spectroscopy studies reveal symmetric spin excitation signals which evolve at Tc to a zero-energy peak, and are assigned to the transition of a S = 3/2 high-spin to a S = 1/2 low-spin state by density functional theory. At temperatures below and close to the spin-crossover Tc, the high-spin S= 3/2 excitations evidence pronouncedly different temperature-dependent excitation energies corresponding to a zero-field splitting in the Hubbard-Kanamori Hamiltonian. The discovery of thermal spin crossover and temperature-dependent zero-field splitting in carbon nanomaterials promises to accelerate quantum information, spintronics and thermometry at the atomic scale.
We previously proposed sustainability indicators to evaluate information and communication technology solutions and services. These sustainability indicators are based on the following concepts: (1) the triple bottom line forms the basis of the evaluation criteria, (2) the same unit is used for every evaluation criterion, and (3) the sustainability indicators can be used to measure a diverse range of ICT solutions and services with different goals. The sustainability indicators are divided into four layers for simplicity, and the triple bottom line and “satisfaction” constitute the first layer. Since the notion of “society” is broad, this layer is further split into “safety”, “health”, and “comfort” then positioned in the second layer. The third layer includes indicators such as “information security” and “ubiquity” from the ICT perspective. In this paper, we propose a new layer consisting of improved sustainability indicators of “decreased social loss”, “decreased business cost”, “decreased user's cost”, “increased business chance”, and “decreased user's cost”. These indicators make it possible to distinguish positive/negative impact as well as target stakeholders of the provided additional value of the ICT solutions and services. We estimated the improved indicators using example ICT services.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Beijing, the capital of China, revised the emission standard for air pollutants for boilers in 2015. To promote fulfillment of the new standard, the "coal to gas project" and the "reward replaces subsidy policy for low-NOx retrofits of boilers" were implemented recently, and the emission of pollutants from boilers has significantly changed as a result. In this study, a comprehensive unit-based emission inventory of multiple air pollutants, including PM10, PM2.5, CO, SO2, NOx, VOCs and NH3, from both coal-fired and gas-fired industrial boilers in Beijing in 2015 was established with data on annual activity and category-specific emission factors, and scenario analysis and the CMAQ model were used to forecast the environmental impacts of the revised standard during the heating season in Beijing. Our results showed that in 2015, the emissions of CO, NOx, PM2.5, PM10, SO2, NH3 and VOCs from the industrial boilers in Beijing were about 51,745 t, 27,943 t, 10,143 t, 14,624 t, 20,227 t, 197.55 t and 1304 t, respectively. Coal-fired boilers were the major source of CO, SO2, PM2.5 and PM10, while gas-fired boilers were the major source of VOCs and NH3. Furthermore, in IPC-1 and IPC-2 scenarios, which represent the different levels of implementation of the "low-NOx retrofits policy" as well as the replacement of all coal-fired boilers with gas-fired boilers, the ambient concentration of PM2.5 and SO2 was reduced by about 7.1% and 9.5%, respectively, and the concentration of NO2 was reduced by about 4.4% in IPC-1 and 3.7% in IPC-2 during the heating season in Beijing.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.