Abstract Tissue/organ-specific genes (TSGs) are important not only for understanding organ development and function, but also for investigating the evolutionary lineages of organs in animals. Here, we investigate the TSGs of 9 adult tissues of an ascidian, Ciona intestinalis Type A ( Ciona robusta ), which lies in the important position of being the sister group of vertebrates. RNA-seq and qRT-PCR identified the Ciona TSGs in each tissue, and BLAST searches identified their homologs in zebrafish and mice. Tissue distributions of the vertebrate homologs were analyzed and clustered using public RNA-seq data for 12 zebrafish and 30 mouse tissues. Among the vertebrate homologs of the Ciona TSGs in the neural complex, 48% and 63% showed high expression in the zebrafish and mouse brain, respectively, suggesting that the central nervous system is evolutionarily conserved in chordates. In contrast, vertebrate homologs of Ciona TSGs in the ovary, pharynx, and intestine were not consistently highly expressed in the corresponding tissues of vertebrates, suggesting that these organs have evolved in Ciona -specific lineages. Intriguingly, more TSG homologs of the Ciona stomach were highly expressed in the vertebrate liver (17-29%) and intestine (22-33%) than in the mouse stomach (5%). Expression profiles for these gene suggest that the biological roles of the Ciona stomach are distinct from those of their vertebrate counterparts. Collectively, Ciona tissues were categorized into 3 groups: i) high similarity to the corresponding vertebrate tissues (neural complex and heart), ii) low similarity to the corresponding vertebrate tissues (ovary, pharynx, and intestine), and iii) low similarity to the corresponding vertebrate tissues, but high similarity to other vertebrate tissues (stomach, endostyle, and siphons). The present study provides transcriptomic catalogs of adult ascidian tissues and significant insights into the evolutionary lineages of the brain, heart, and digestive tract of chordates.
A wide variety of bioactive peptides have been identified in the central nervous system and several peripheral tissues in the ascidian Ciona intestinalis type A (Ciona robusta). However, hemocyte endocrine peptides have yet to be explored. Here, we report a novel 14-amino acid peptide, CiEMa, that is predominant in the granular hemocytes and unilocular refractile granulocytes of Ciona. RNA-seq and qRT-PCR revealed the high CiEma expression in the adult pharynx and stomach. Immunohistochemistry further revealed the highly concentrated CiEMa in the hemolymph of the pharynx and epithelial cells of the stomach, suggesting biological roles in the immune response. Notably, bacterial lipopolysaccharide stimulation of isolated hemocytes for 1-4 hours resulted in increased CiEMa secretion. Furthermore, CiEMa-stimulated pharynx exhibited mRNA upregulation of the growth factor (Fgf3/7/10/22), vanadium binding proteins (CiVanabin1 and CiVanabin3), and forkhead and homeobox transcription factors (Foxl2, Hox3, and Dbx), but not antimicrobial peptides (CrPap-a and CrMam-a) or immune-related genes (Tgfbtun3, Tnfa, and Il17-2). Collectively, these results suggest that CiEMa plays roles in signal transduction involving tissue development or repair in the immune response, rather than in the direct regulation of immune-response genes. The present study identified a novel Ciona hemocyte peptide, CiEMa, providing insights into the molecular and functional diversity of the immune response in chordates.
Gonadotrophin-releasing hormone (GnRH) is the primary hypothalamic factor responsible for the control of gonadotrophin secretion in vertebrates. However, within the last decade, two other hypothalamic neuropeptides have been found to play key roles in the control of reproductive functions: gonadotrophin-inhibitory hormone (GnIH) and kisspeptin. In 2000, we discovered GnIH in the quail hypothalamus. GnIH inhibits gonadotrophin synthesis and release in birds through actions on GnRH neurones and gonadotrophs, mediated via GPR147. Subsequently, GnIH orthologues were identified in other vertebrate species from fish to humans. As in birds, mammalian and fish GnIH orthologues inhibit gonadotrophin release, indicating a conserved role for this neuropeptide in the control of the hypothalamic-pituitary-gonadal axis across species. Subsequent to the discovery of GnIH, kisspeptin, encoded by the KiSS-1 gene, was discovered in mammals. By contrast to GnIH, kisspeptin has a direct stimulatory effect on GnRH neurones via GPR54. GPR54 is also expressed in pituitary cells, but whether gonadotrophs are targets for kisspeptin remains unresolved. The KiSS-1 gene is also highly conserved and has been identified in mammals, amphibians and fish. We have recently found a second isoform of KiSS-1, designated KiSS-2, in several vertebrates, but not birds, rodents or primates. In this review, we highlight the discovery, mechanisms of action, and functional significance of these two chief regulators of the reproductive axis.
Theca/interstitial cells are responsible for the growth and maturation of ovarian follicles. However, little is known about the theca/interstitial cell-specific genes and their functions. In this study, we explored transcriptomes of theca/interstitial cells by RNA-seq, and the novel biological roles of a theca cell marker, asporin (Aspn)/periodontal ligament-associated protein 1 (PLAP-1). RNA-seq detected 432 and 62 genes expressed specifically in theca/interstitial cells and granulosa cells isolated from 3-weeks old mouse ovaries. Gene ontology analysis demonstrated that these genes were largely categorized into four major groups: extracellular matrix organization-related terms, chemotaxis-related terms, the angiogenesis-related terms, and morphogenesis-related terms. In situ hybridization demonstrated that the newly detected representative gene, Aspn/PLAP-1, was detected specifically in the outer layer of theca cells in contrast with the expression of the basal lamina-specific gene, Nidgen-1. Intriguingly, an Aspn/PLAP-1 antibody completely arrested the growth of secondary follicles that is the gonadotropin-independent follicle developmental stage. Furthermore, transforming growth factor-β (TGF-β)-triggered signaling was induced by the Aspn/PLAP-1 antibody treatment, which is consistent with the inhibitory effect of Aspn/PLAP-1 on TGF-β. Altogether, these results suggest that theca cells are classified into subpopulations on the basis of new marker genes and their biological functions, and provide evidence that Aspn/PLAP-1 is expressed exclusively in the outer layer of theca cells and plays a pivotal role in the growth of secondary follicles via downregulation of the canonical TGF-β signaling cascade.
The fine structure of the endothelial cells in meningiomas was studied by the electron microscopy. There were an increased number of pinocytotic vesicles and fenestrations especially at the attenuated portion of the endothelial cells. Intraluminal infoldings of the plasma membrane were frequently found. Those were certainly abnormal and all probably related to the increased vascular permeability of the endothelial cells. Usually large number of tubular bodies and associated tubule-containing vacuoles were found. The constituent tubules seemed identical but the various bodies differed in terms of their size, matrix, and the packing of the tubules within them. The significance of those structures is unknown.