Fast pyrolysis of biomass is a thermochemical process for producing fuels and chemicals from renewable sources that gained the attention of the scientific community during the last decades. Significant progress has been made in the last years towards the lack of availability and consistency of biooil; nevertheless, the chemicophysical properties of crude biooil such as low pH, high viscosity, and immiscibility with diesel fuel still do not easily allow its direct use in power and heat generation. We report the preliminary results of emulsification of biooil with biodiesel in different amounts and with the help of various surfactants and cosurfactant as an upgrading path. The effect of emulsification of small amounts of biooil in biodiesel was investigated. Several commercially available nonionic surfactants were tested, and their effect on the stability of the produced emulsions was monitored.
Abstract Anaerobic digestion (AD) is a well-known biological conversion process to obtain a gaseous biofuel from organic matter: in fact, upgrading biogas to biomethane is a mean to substitute conventional natural gas. It is also known that biochar can improve the biogas production in AD processes. In this work, different biochars have been produced from various feedstocks at different process conditions. Biochars obtained from the carbonization of wheat straw (WS) and poplar (P) were produced in a Thermo Gravimetric Analyser at lab scale, at a temperature of 400 °C and 2 h of retention time at the maximum temperature, with a heating rate of 20 °C min −1 . Another biochar from poplar (Pc) was also produced in a pilot plant (CarbOn, RE-CORD) working in oxidative pyrolysis conditions, at a temperature range between 500 and 600 °C. Biochars were oxidized with Oxone® using two different methods (ball-milling and simple aqueous solution mixing) to increase the amount of functional groups on their surface. Oxidized biochars (Ws_Ox and P_Ox) were characterized by FTIR, BET, and CEC, and their impact on biogas production was investigated through a lab scale biochemical methane potential (BMP) test using maize silage as substrate. 0.33 g of biochar was used for each treatment. BMP test shows that all batches containing biochar as additive produced more biogas than control (C). WS_Ox and P_Ox produced respectively a + 7.7% and + 11.3% of biogas than C, obtaining the higher productivities with respect to not oxidized biochars. The addition of P and Pc biochars were similar performances in AD, thus highlighting that no significant differences are due to different biochar production scales and process parameters from the same feedstock. This study highlights how in addition to the various examined parameters (nature of the feedstock, pyrolysis parameters, size of biochar and its concentration in AD), also the presence of specific functional groups on the biochar surface influences the AD performance.