Software defined radio -- Adaptive modulation scheme and algorithm -- Low power techniques -- Leakage reduction -- Low power multiplier for equalizer -- Wave domino multiplier for DSP core subject to parametric variations.
Pomelo seeds (PS) are important by-product of pomelo fruits (Citrus grandis Osbeck). The value-added utilization of PS remains highly challenged. This study aimed to investigate the utilization potential of PS as natural antioxidant, antibacterial, herbicidal agents, and their functional components. The ethanolic extract (EE) of PS and its four fractions as PEE (petroleum ether extract), AcOEtE (ethyl acetate extract), BTE (butanol extract), and WE (water extract), were prepared and biologically evaluated. BTE exhibited the best antioxidant activity among all these extracts, in both ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) and FRAP (ferric reducing antioxidant power) assays. AcOEtE was superior to other extracts in herbicidal assay against both Festuca elata Keng (IC50 of 0.48 mg mL-1 ) and Amaranthus retroflexus L. (IC50 of 0.94 mg mL-1 ). Meanwhile, both AcOEtE and BTE demonstrated inhibitory effects against Bacillus subtilis, Escherichia coli, and Xanthomonas citri subsp. citri, with MIC ranging 2.5-5.0 mg mL-1 . Furthermore, the primary chemical components involving naringin, deacetylnomilin, limonin, nomilin, and obacunone, were quantified in all these extracts. PCA (principal component analysis) suggested that naringin might highly contribute to the antioxidant activity of PS, and the herbicidal activity should be ascribed to limonoids. This study successfully identified AcOEtE and BTE as naturally occurring antioxidant, antibacterial, and herbicidal agents, showing application potential in food and cosmetics industries, and organic farming agriculture.
The effects of SO2 and H2O on the low-temperature selective catalytic reduction (SCR) activity over MnOx/ZrO2/MWCNTs and MnOx/ZrO2/MWCNTs catalysts modified by Ce or Y was studied. MnCeZr and MnYZr catalysts reached nearly 100% and 93.9% NOx conversions at 200 °C and 240 °C, respectively. They displayed a better SO2 tolerance, and the effect of H2O was negligible. The structural properties of the catalysts were characterized by XRD, H2-TPR, XPS, and FTIR before and after the reaction. The results showed that Ce could increase the mobility of the oxygen and improve the valence and the oxidizability of manganese, while the effect of Y was the opposite. This might be the main reason why the catalytic activity of MnCeZr was better than MnYZr in the presence or absence of SO2 and H2O. Doping Ce or Y broadened the active temperature window. Ce or Y, which existed in the catalysts with a high dispersion or at the amorphous state, preferred to react with SO2 to form sulfate species, and protected the manganese active sites from combing with SO2 to some extent, which coincided with the theory of ionic polarization.
Mn-Ce/CeAPSO-34 was prepared, in which manganese and cerium were supported on the surface through using the Ethanol dispersion method, while cerium was incorporated in the SAPO-34 framework by a one-step hydrothermal method. Based on our previous study, a strong synergistic effect of cerium presented in the framework and the surface was existing in Mn-Ce/CeAPSO-34 catalyst, which showed outstanding SO2 tolerance and H2O resistance in the low-temperature NH3-SCR. In situ FT-IR and DFT calculations were used to investigate the synergistic effects. Based on the characterization results of in situ FT-IR study, it was found that more amount of nitrate species and NH3 species adsorbed on the surface of Mn-Ce/CeAPSO-34, while less the amount of sulfate species deposited during reaction process, which in the presence of SO2. Meanwhile, DFT calculations revealed that Ce site supported on the surface, which neighbored by Ce site in the framework more were capable of reacting with NO and NH3.
Cowpea aphid ( Aphis craccivora Koch) is a plant pest that causes serious damage to vegetable crops. Extensive use of synthetic chemical pesticides causes deleterious effects on consumers as well as the environment. Hence, the search for environmentally friendly insecticides in the management of cowpea aphids is required. The present work aims to investigate the aphicidal activity of pomelo seed oil (PSO) on cowpea aphids, the possible insecticidal mechanisms, its chemical constituent profile, as well as the toxicity of its primary compounds. The results of the toxicity assay showed that PSO had significant insecticidal activity against aphids with a 72-hour LC 50 value of 0.09 μg/aphid and 3.96 mg/mL in the contact and residual toxicity assay, respectively. The enzymatic activity of both glutathione S-transferase (GST) and acetyl cholinesterase (AChE) significantly decreased, as well as the total protein content, after PSO treatment, which suggested that the reduction of AChE, GST, and the total protein content in aphids treated with PSO might be responsible for the mortality of A. craccivora . The GC-MS analysis revealed that PSO contained limonene (22.86%), (9Z,12 Z )-9,12-octadecadienoic acid (20.21%), n -hexadecanoic acid (15.79%), (2 E ,4 E )-2,4-decadienal (12.40%), and (2 E ,4 Z )-2,4-decadienal (7.77%) as its five major compounds. Furthermore, (9Z,12 Z )-9,12-octadecadienoic acid showed higher toxicity to aphids than both PSO and thiamethoxam (positive control). This study emphasized the potential of PSO as a natural plant-derived insecticide in controlling cowpea aphids and also provided a novel approach for the value-added utilization of pomelo seed.
This paper briefly introduces the power line carrier communication and field bus technology on LonWorks. The research on Application on LonWorks in temperature measurement system introduces how to use PL3120 to design a two temperature measuring system based on power line carrier communication of LonWorks from the aspect of software and hardware. The following key code of software has carried on the detailed notes.
Citral is an aliphatic aldehyde extracted from citrus essential oil. The aim of the study was to examine how citral treatment affects the weight loss, firmness, respiration, and ripening index, as well as the antioxidant capacity of kiwifruit (Actinidia chinensis cv. ‘Jinkui’). The citral treatment was seen to reduce the weight loss, softening, and fruit respiration compared to control fruits. Citral treatment also had an inhibitory effect on ripening index, O2•− production rate, and malondialdehyde (MDA) accumulation. The degradations of ascorbic acid (AsA) content, total flavonoids content (TFC), and total phenolics content (TPC) were also suppressed by citral. In contrast, citral treatment induces the activation of antioxidant enzyme system such as superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Collectively, the results indicated that citral treatment delays postharvest senescence and prolongs storage life by enhancing antioxidant capacity in harvested kiwifruits. These findings suggest that citral has the potential to be used as a promising natural preservative for the extension of postharvest quality in harvested kiwifruit.