Mesenchymal stem cells (MSCs) represent a great therapeutic promise in pre-clinical models of osteoarthritis (OA), but many questions remain as to their therapeutic mechanism of action: engraftment versus paracrine action. Encapsulation of human MSCs (hMSCs) in sodium alginate microspheres allowed for the paracrine signaling properties of these cells to be isolated and studied independently of direct cellular engraftment. The objective of the present study was to quantitatively assess the efficacy of encapsulated hMSCs as a disease-modifying therapeutic for OA, using a medial meniscal tear (MMT) rat model. It was hypothesized that encapsulated hMSCs would have a therapeutic effect, through paracrine-mediated action, on early OA development. Lewis rats underwent MMT surgery to induce OA. 1 d post-surgery, rats received intra-articular injections of encapsulated hMSCs or controls (i.e., saline, empty capsules, non-encapsulated hMSCs). Microstructural changes in the knee joint were quantified using equilibrium partitioning of a ionic contrast agent based micro-computed tomography (EPIC-μCT) at 3 weeks post-surgery, an established time point for early OA. Encapsulated hMSCs significantly attenuated MMT-induced increases in articular cartilage swelling and surface roughness and augmented cartilaginous and mineralized osteophyte volumes. Cellular encapsulation allowed to isolate the hMSC paracrine signaling effects and demonstrated that hMSCs could exert a chondroprotective therapeutic role on early stage OA through paracrine signaling alone. In addition to this chondroprotective role, encapsulated hMSCs augmented the compensatory increases in osteophyte formation. The latter should be taken into strong consideration as many clinical trials using MSCs for OA are currently ongoing.
Besides motor symptoms, many individuals with Parkinson's disease develop cognitive impairment perhaps due to coexisting α-synuclein and Alzheimer's disease pathologies and impaired brain insulin signalling. Discovering biomarkers for cognitive impairment in Parkinson's disease could help clarify the underlying pathogenic processes and improve Parkinson's disease diagnosis and prognosis. This study used plasma samples from 273 participants: 103 Parkinson's disease individuals with normal cognition, 121 Parkinson's disease individuals with cognitive impairment (81 with mild cognitive impairment, 40 with dementia) and 49 age- and sex-matched controls. Plasma extracellular vesicles enriched for neuronal origin were immunocaptured by targeting the L1 cell adhesion molecule, then biomarkers were quantified using immunoassays. α-Synuclein was lower in Parkinson's disease compared to control individuals (P = 0.004) and in cognitively impaired Parkinson's disease individuals compared to Parkinson's disease with normal cognition (P < 0.001) and control (P < 0.001) individuals. Amyloid-β42 did not differ between groups. Phosphorylated tau (T181) was higher in Parkinson's disease than control individuals (P = 0.003) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and controls (P < 0.001). Total tau was not different between groups. Tyrosine-phosphorylated insulin receptor substrate-1 was lower in Parkinson's disease compared to control individuals (P = 0.03) and in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and controls (P = 0.01), and also decreased with increasing motor symptom severity (P = 0.005); serine312-phosphorylated insulin receptor substrate-1 was not different between groups. Mechanistic target of rapamycin was not different between groups, whereas phosphorylated mechanistic target of rapamycin trended lower in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.05). The ratio of α-synuclein to phosphorylated tau181 was lower in Parkinson's disease compared to controls (P = 0.001), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P < 0.001) and decreased with increasing motor symptom severity (P < 0.001). The ratio of insulin receptor substrate-1 phosphorylated serine312 to insulin receptor substrate-1 phosphorylated tyrosine was higher in Parkinson's disease compared to control individuals (P = 0.01), in cognitively impaired compared to cognitively normal Parkinson's disease individuals (P = 0.02) and increased with increasing motor symptom severity (P = 0.003). α-Synuclein, phosphorylated tau181 and insulin receptor substrate-1 phosphorylated tyrosine contributed in diagnostic classification between groups. These findings suggest that both α-synuclein and tau pathologies and impaired insulin signalling underlie Parkinson's disease with cognitive impairment. Plasma neuronal extracellular vesicles biomarkers may inform cognitive prognosis in Parkinson's disease.
Brain iron deficiency (ID) and, to a degree, systemic ID have been implicated in restless leg syndrome (RLS) pathogenesis. Previously, we found increased ferritin in neuron‐derived extracellular vesicles (NDEVs) in RLS, suggesting a mechanism for depleting intracellular iron by secreting ferritin‐loaded NDEVs. In this study, we hypothesized that increased NDEV ferritin occurs even in RLS accompanied by systemic ID and that neuronal intracellular iron depletion in RLS also manifests as NDEV abnormalities in other iron regulatory proteins, specifically, decreased transferrin receptor (TfR) and increased ferroportin. To address these hypotheses, we studied 71 women with ID anemia, 36 with RLS, and 35 without RLS. Subjects with RLS again showed higher NDEV ferritin and also decreased TfR, suggesting diminished neuronal capacity for iron uptake. Findings inform a more complete understanding of the pathogenic role of neuronal iron homeostasis and dissociate it from peripheral ID. ANN NEUROL 2024;96:560–564
Proteins expressed by brain endothelial cells (BECs), the primary cell type of the blood-brain barrier, may serve as sensitive plasma biomarkers for neurological and neurovascular conditions, including cerebral small vessel disease.
Osteoarthritis is a degenerative disease of synovial joints affecting all tissues, including articular cartilage and subchondral bone. Osteoarthritis animal models can recapitulate aspects of human disease progression and are used to test efficacy of drugs, biomaterials, and cell therapies. The rat medial meniscus transection (MMT) model is a surgically induced posttraumatic osteoarthritis model commonly used for preclinical therapeutic screening. We describe herein, the qualitative and quantitative changes to articular cartilage, subchondral bone, and formation of osteophytes at early-, mid-, and late-stages of osteoarthritis progression. Tibia of MMT-operated animals showed proteoglycan loss and fibrillation along articular cartilage surfaces as early as 3-weeks post-surgery. With contrast-enhanced micro-CT technique, quantitative, 3-dimensional analysis of the tibia showed that the articular cartilage thickened at 3- and 6-weeks post-surgery and decreased at 12-weeks post-surgery. This decreased cartilage thickness corresponded with increased lesions in the articular cartilage that led to its full degradation and exposing the subchondral bone layer. Further, subchondral bone thickening was significant at 6-weeks post-surgery and followed cartilage damage. Osteophytes were found as early as 3-weeks post-surgery and coincided with articular cartilage degradation. Cartilaginous osteophytes preceded mineralization, suggesting endochondral ossification. The rat MMT model has predominantly been used out to 3-weeks, and most studies determined the effect of therapies to delay or prevent the onset of osteoarthritis. We provide evidence that an extension of the rat MMT model out to 6- and 12-weeks more resembled severe phenotypes of human osteoarthritis. Thus, evaluating novel therapeutics at late-stage will be important for eventual clinical translation.
Abstract Objective Osteoarthritis (OA) is a chronic degenerative disease of the joints characterized by articular cartilage degradation. While there are clear sex differences in OA development in humans, most pre-clinical research has been conducted solely in male animals thus limiting the ability of these findings to be generalized to both sexes in the context of this disease. The objective of this study was to determine if sex impacts the progression and severity of OA in the rat medial meniscal tear (MMT) preclinical animal model used to surgically induce OA. It was hypothesized that differences would be observed between males and females following MMT surgery. Design A MMT model was employed in male and female Lewis rats to induce OA. Animals were euthanized 3 weeks post-surgery and EPIC-μCT was used to quantitatively evaluate articular cartilage structure and composition, osteophyte volumes and subchondral bone structure. Results Quantitative analysis of the medial 1/3 articular cartilage via EPIC-μCT showed increased cartilage thickness and proteoglycan loss in the MMT of both sexes, when compared to sham. Additionally, both male and female animals in the MMT group had increased subchondral bone mineral density and larger total osteophyte volumes due to MMT. Conclusion These data demonstrate that OA can be induced in both sexes using the rat MMT model. Moving forward, adding sex as a factor in preclinical OA studies should be standard practice in pre-clinical studies in order to elucidate more inclusive and translatable results into the clinic.
Abstract Mesenchymal stromal cells (MSCs) have shown promise as a treatment for osteoarthritis (OA); however, effective translation has been limited by numerous factors ranging from high variability and heterogeneity of hMSCs, to suboptimal delivery strategies, to poor understanding of critical quality and potency attributes. The objective of the current study was to assess the effects of biomaterial encapsulation in alginate microcapsules on human MSC (hMSC) secretion of immunomodulatory cytokines in an OA microenvironment and therapeutic efficacy in treating established OA. Lewis rats underwent Medial Meniscal Transection (MMT) surgery to induce OA. Three weeks post-surgery, after OA was established, rats received intra-articular injections of either encapsulated hMSCs or controls (saline, empty capsules, or non-encapsulated hMSCs). Six weeks post-surgery, microstructural changes in the knee joint were quantified using contrast enhanced microCT. Encapsulated hMSCs attenuated progression of OA including articular cartilage degeneration (swelling and cartilage loss) and subchondral bone remodeling (thickening and hardening). A multiplexed immunoassay panel (41 cytokines) was used to profile the in vitro secretome of encapsulated and non-encapsulated hMSCs in response to IL-1□, a key cytokine involved in OA. Non-encapsulated hMSCs showed an indiscriminate increase in all cytokines in response to IL-1□ while encapsulated hMSCs showed a highly targeted secretory response with increased expression of some pro-inflammatory (IL-1β, IL-6, IL-7, IL-8), anti-inflammatory (IL-1RA), and chemotactic (G-CSF, MDC, IP10) cytokines. These data show that biomaterial encapsulation using alginate microcapsules can modulate hMSC paracrine signaling in response to OA cytokines and enhance the therapeutic efficacy of the hMSCs in treating established OA.