Tolinapant (ASTX660) is a potent, nonpeptidomimetic antagonist of cellular inhibitor of apoptosis proteins 1 and 2 (cIAP1/2) and X-linked IAP, which is currently being evaluated in a phase 2 study in T-cell lymphoma (TCL) patients. Tolinapant has demonstrated evidence of single-agent clinical activity in relapsed/refractory peripheral TCL and cutaneous TCL. To investigate the mechanism of action underlying the single-agent activity observed in the clinic, we have used a comprehensive translational approach integrating in vitro and in vivo models of TCL confirmed by data from human tumor biopsies. Here, we show that tolinapant acts as an efficacious immunomodulatory molecule capable of inducing complete tumor regression in a syngeneic model of TCL exclusively in the presence of an intact immune system. These findings were confirmed in samples from our ongoing clinical study showing that tolinapant treatment can induce changes in gene expression and cytokine profile consistent with immune modulation. Mechanistically, we show that tolinapant can activate both the adaptive and the innate arms of the immune system through the induction of immunogenic forms of cell death. In summary, we describe a novel role for IAP antagonists as immunomodulatory molecules capable of promoting a robust antitumor immune response in TCL.
The MAPK signaling pathway is commonly upregulated in human cancers. As the primary downstream effector of the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers and for overcoming resistance to upstream inhibition. ASTX029 is a highly potent and selective dual-mechanism ERK inhibitor, discovered using fragment-based drug design. Because of its distinctive ERK-binding mode, ASTX029 inhibits both ERK catalytic activity and the phosphorylation of ERK itself by MEK, despite not directly inhibiting MEK activity. This dual mechanism was demonstrated in cell-free systems, as well as cell lines and xenograft tumor tissue, where the phosphorylation of both ERK and its substrate, ribosomal S6 kinase (RSK), were modulated on treatment with ASTX029. Markers of sensitivity were highlighted in a large cell panel, where ASTX029 preferentially inhibited the proliferation of MAPK-activated cell lines, including those with BRAF or RAS mutations. In vivo, significant antitumor activity was observed in MAPK-activated tumor xenograft models following oral treatment. ASTX029 also demonstrated activity in both in vitro and in vivo models of acquired resistance to MAPK pathway inhibitors. Overall, these findings highlight the therapeutic potential of a dual-mechanism ERK inhibitor such as ASTX029 for the treatment of MAPK-activated cancers, including those which have acquired resistance to inhibitors of upstream components of the MAPK pathway. ASTX029 is currently being evaluated in a first in human phase I-II clinical trial in patients with advanced solid tumors (NCT03520075).
<p>Supplementary methods Supplementary Tables S1-S6 Supplementary Figure legends for SF1-SF11 Supplementary Table S1. Primers used for qRT-PCR Supplementary Table S2. Primers used for pyrosequencing Supplementary Table S3. IC50 values for CDDP resensitization by SGI-110 and 5-aza-dC in vitro Supplementary Table S4. Relative induction of MLH1 mRNA levels in response to SGI-110 Supplementary Table S5. Candidate drivers of OC CDDP Resistance Supplementary Table S6. Relative induction of ZIC1 mRNA levels in response to SGI-110</p>
<div>Abstract<p>The MAPK signaling pathway is commonly upregulated in human cancers. As the primary downstream effector of the MAPK pathway, ERK is an attractive therapeutic target for the treatment of MAPK-activated cancers and for overcoming resistance to upstream inhibition. ASTX029 is a highly potent and selective dual-mechanism ERK inhibitor, discovered using fragment-based drug design. Because of its distinctive ERK-binding mode, ASTX029 inhibits both ERK catalytic activity and the phosphorylation of ERK itself by MEK, despite not directly inhibiting MEK activity. This dual mechanism was demonstrated in cell-free systems, as well as cell lines and xenograft tumor tissue, where the phosphorylation of both ERK and its substrate, ribosomal S6 kinase (RSK), were modulated on treatment with ASTX029. Markers of sensitivity were highlighted in a large cell panel, where ASTX029 preferentially inhibited the proliferation of MAPK-activated cell lines, including those with <i>BRAF</i> or <i>RAS</i> mutations. <i>In vivo</i>, significant antitumor activity was observed in MAPK-activated tumor xenograft models following oral treatment. ASTX029 also demonstrated activity in both <i>in vitro</i> and <i>in vivo</i> models of acquired resistance to MAPK pathway inhibitors. Overall, these findings highlight the therapeutic potential of a dual-mechanism ERK inhibitor such as ASTX029 for the treatment of MAPK-activated cancers, including those which have acquired resistance to inhibitors of upstream components of the MAPK pathway. ASTX029 is currently being evaluated in a first in human phase I–II clinical trial in patients with advanced solid tumors (NCT03520075).</p></div>
Abstract The RAS-regulated RAF-MEK1/2-ERK1/2 signaling pathway is frequently deregulated in cancer due to activating mutations of growth factor receptors, RAS or BRAF. Both RAF and MEK1/2 inhibitors are clinically approved and various ERK1/2 inhibitors (ERKi) are currently undergoing clinical trials. To date, ERKi display two distinct mechanisms of action (MoA): catalytic ERKi solely inhibit ERK1/2 catalytic activity, whereas dual mechanism ERKi additionally prevents the activating phosphorylation of ERK1/2 at its T-E-Y motif by MEK1/2. These differences may impart significant differences in biological activity because T-E-Y phosphorylation is the signal for nuclear entry of ERK1/2, allowing them to access many key transcription factor targets. Here, we characterized the MoA of five ERKi and examined their functional consequences in terms of ERK1/2 signaling, gene expression, and antiproliferative efficacy. We demonstrate that catalytic ERKi promote a striking nuclear accumulation of p-ERK1/2 in KRAS-mutant cell lines. In contrast, dual-mechanism ERKi exploits a distinct binding mode to block ERK1/2 phosphorylation by MEK1/2, exhibit superior potency, and prevent the nuclear accumulation of ERK1/2. Consequently, dual-mechanism ERKi exhibit more durable pathway inhibition and enhanced suppression of ERK1/2-dependent gene expression compared with catalytic ERKi, resulting in increased efficacy across BRAF- and RAS-mutant cell lines.
Abstract The RAS-RAF-MEK-ERK signalling cascade is activated through mutations in RAS or RAF in over 30% of cancers. The successful development of inhibitors of BRAF and MEK kinases has led to effective treatment particularly of melanomas whose tumor growth is driven by activating mutations in BRAF such as V600E. Despite these successes, resistance emerges after several months, leading to increased signaling through ERK1/2. This has prompted the development of direct inhibitors of ERK1/2, several of which are in early clinical trials. The majority of clinical ERK1/2 inhibitors are ATP competitive, blocking ERK1/2 catalytic phosphorylation of downstream substrates such as RSK, but do not modulate phosphorylation of ERK1/2 by MEK. Crystal structural studies performed by us and others on the pERK1/2 modulating inhibitor SCH772984 suggested that it induces a conformational change in the glycine-rich loop of ERK2, which leads to Tyr36 becoming tucked under the loop and creating a new binding pocket. We hypothesized that this binding mode might underlie the ability of SCH772984 to block the phosphorylation of ERK1/2, and initiated a fragment-based approach to develop novel, orally bioavailable inhibitors that elicit a similar conformational change and also modulate the phosphorylation of ERK1/2. Using screening methods including high-throughput X-ray crystallography and biophysical assays, we identified fragments binding to both the hinge and the inducible pocket of ERK2. Progressive rounds of structure-guided fragment optimization and growing led to an understanding of inhibitor structure determinants required to induce the conformational change in ERK2. These efforts, together with iterative optimization in a screening cascade including measurement of pRSK and pERK levels and antiproliferative activity in RAS and BRAF mutant cells, led to the discovery of a novel series of pERK modulating ERK1/2 inhibitors. The lead compound shows low nanomolar potency in biochemical ERK1/2 assays and an excellent kinome selectivity profile. In BRAF and RAS mutant cell lines, the lead shows low nanomolar cell proliferation IC50 values, while sparing cell lines not driven by the MAPK pathway. The lead exhibits robust antitumor activity upon oral dosing in a range of subcutaneous xenograft models including the mutant BRAF colorectal line Colo205, providing a promising basis for further optimization towards clinical pERK1/2 modulating ERK1/2 inhibitors. Citation Format: Tom D. Heightman, Valerio Berdini, Hannah Braithwaite, Ildiko Buck, Megan Cassidy, Juan Castro, Aurélie Courtin, James Day, Charlotte East, Lynsey Fazal, Brent Graham, Charlotte Griffiths-Jones, John Lyons, Vanessa Martins, Sandra Muench, Joanne Munck, David Norton, Marc O'Reilly, Nick Palmer, Puja Pathuri, Mike Reader, David Rees, Sharna Rich, Caroline Richardson, Harpreet Saini, Neil Thompson, Nicola Wallis, Hugh Walton, Nicola Wilsher, Alison Woolford, Chris Murray. Fragment-based discovery of a highly potent, orally bioavailable ERK1/2 inhibitor that modulates the phosphorylation and catalytic activity of ERK1/2 [abstract]. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2017 Oct 26-30; Philadelphia, PA. Philadelphia (PA): AACR; Mol Cancer Ther 2018;17(1 Suppl):Abstract nr B161.