Abstract Bacterial communities govern their composition using a wide variety of social interactions, some of which are antagonistic. Many antagonistic mechanisms, such as the Type VI Secretion System (T6SS), require killer cells to directly contact target cells. The T6SS is hypothesized to be a highly potent weapon, capable of facilitating the invasion and defense of bacterial populations. However, we find that the efficacy of the T6SS is severely limited by the material consequences of cell death. Through experiments with Vibrio cholerae strains that kill via the T6SS, we show that dead cell debris quickly accumulates at the interface that forms between competing strains, preventing contact and thus preventing killing. While previous experiments have shown that T6SS killing can reduce a population of target cells by as much as one-million-fold, we find that as a result of the formation of dead cell debris barriers, the impact of T6SS killing depends sensitively on the initial concentrations of killer and target cells. Therefore, while the T6SS provides defense against contacting competitors on a single cell level, it is incapable of facilitating invasion or the elimination of competitors on a community level.
Abstract Background Like many bacteria, Vibrio cholerae , which causes fatal cholera, deploys a harpoon-like Type VI Secretion System (T6SS) to compete against other microbes in environmental and host settings. The T6SS punctures adjacent cells and delivers toxic effector proteins that are harmless to bacteria carrying cognate immunity factors. Only four effector/immunity pairs encoded on one large and three auxiliary gene clusters have been characterized from largely clonal, patient-derived strains of V. cholerae . Results We sequenced two dozen V. cholerae strain genomes from diverse sources and developed a novel and adaptable bioinformatic tool based on Hidden Markov Models. We identified two new T6SS auxiliary gene clusters; one, Aux 5, is described here. Four Aux 5 loci are present in the host strain, each with an atypical effector/immunity gene organization. Structural prediction of the putative effector indicated it is a lipase, which we name TleV1 ( T ype VI l ipase e ffector V ibrio, TleV1). Ectopic TleV1 expression induced toxicity in E. coli , which was rescued by co-expression of the TleV1 immunity factor. A clinical V. cholerae reference strain expressing the Aux 5 cluster used TleV1 to lyse its parental strain upon contact via its T6SS but was unable to kill parental cells expressing TleV1’s immunity factor. Conclusion We developed a novel bioinformatic method and identified new T6SS gene clusters in V. cholerae . We also showed the TleV1 toxin is delivered in a T6SS-manner by V. cholerae and can lyse other bacterial cells. Our web-based tool may be modified to identify additional novel T6SS genomic loci in diverse bacterial species.
<p>Biofilms are highly structured, densely packed bacterial consortia where many different species can coexist. During biofilm development and growth, the different species often form spatial distribution patterns that govern biofilm composition and function. In some cases, emerging structures have been explained as the result of social interactions between bacteria, e.g. cooperation and competition. Others emphasize the role of local mechanics, where spatial structuring arises from forces exerted between cells or between cells and their environment. Typically, these two lines of argumentation are treated separately. Here, we show that mechanics and social interactions can be strongly interrelated and their combination can crucially impact biofilm formation and dynamics. Using confocal microscopy and bacterial co-culture assays, we examine how bacterial antagonism impacts biofilm mechanics, and vice versa. We study competing Vibrio cholerae strains that kill on contact using the Type 6 secretion system. In case of mutual killers, i.e. two V. cholerae strains that can kill each other on contact, this social interaction leads to the formation of clonal domains of the competing strains (Mc Nally et al., Nat Commun, 2017). Intuitively, an unequal fight may enable a superior killer to invade and quickly eliminate a much weaker competitor. However, we observe that killer cells can coexist with killing-deficient target cells for very long times, and find that this results from the mechanical consequences of the deadly competition. Killing produces dead cells, which accumulates between domains of competing cells and prevents subsequent killing. Counterintuitively, our results suggest that antagonistic interactions stabilize coexistence in diverse communities. The findings demonstrate that the impact of social interactions in bacterial consortia is complex, requiring the understanding of the structural and the statistical-mechanical processes in biofilms.</p>
Bacterial communities are governed by a wide variety of social interactions, some of which are antagonistic with potential significance for bacterial warfare. Several antagonistic mechanisms, such as killing via the type VI secretion system (T6SS), require killer cells to directly contact target cells. The T6SS is hypothesized to be a highly potent weapon, capable of facilitating the invasion and defence of bacterial populations. However, we find that the efficacy of contact killing is severely limited by the material consequences of cell death. Through experiments with Vibrio cholerae strains that kill via the T6SS, we show that dead cell debris quickly accumulates at the interface that forms between competing strains, preventing physical contact and thus preventing killing. While previous experiments have shown that T6SS killing can reduce a population of target cells by as much as 106-fold, we find that, as a result of the formation of dead cell debris barriers, the impact of contact killing depends sensitively on the initial concentration of killer cells. Killer cells are incapable of invading or eliminating competitors on a community level. Instead, bacterial warfare itself can facilitate coexistence between nominally antagonistic strains. While a variety of defensive strategies against microbial warfare exist, the material consequences of cell death provide target cells with their first line of defence.
ABSTRACT Vibrio cholerae is an aquatic Gram-negative bacterium that causes severe diarrheal cholera disease when ingested by humans. To eliminate competitor cells in both the external environment and inside hosts, V. cholerae uses the Type VI Secretion System (T6SS). The T6SS is a macromolecular weapon employed by many Gram-negative bacteria to deliver cytotoxic proteins into adjacent cells. In addition to canonical T6SS gene clusters encoded by all sequenced V. cholerae isolates, strain BGT49 encodes an additional locus, which we named auxiliary cluster 4 (Aux 4). The Aux 4 cluster is located on a mobile genetic element and can be used by killer cells to eliminate both V. cholerae and Escherichia coli cells in a T6SS-dependent manner. A putative toxin encoded in the cluster, which we name TpeV ( T ype VI P ermeabilizing E ffector V ibrio ), shares no homology to known proteins and does not contain motifs or domains indicative of function. Ectopic expression of TpeV in the periplasm of E. coli permeabilizes cells and disrupts the membrane potential. Using confocal microscopy, we confirm that susceptible target cells become permeabilized when competed with killer cells harboring the Aux 4 cluster. We also determine that tpiV , the gene located immediately downstream of tpeV , encodes an immunity protein that neutralizes the toxicity of TpeV. Finally, we show that TpeV homologs are broadly distributed across important animal and plant pathogens and are localized in proximity to other T6SS genes. Our results suggest that TpeV is a toxin that belongs to a large family of T6SS proteins. IMPORTANCE Bacteria live in polymicrobial communities where competition for resources and space is essential for survival. Proteobacteria use the T6SS to eliminate neighboring cells and cause disease. However, the mechanisms by which many T6SS toxins kill or inhibit susceptible target cells are poorly understood. The sequence of the TpeV toxin we describe here is unlike any previously described protein. We demonstrate that it has antimicrobial activity by permeabilizing cells, eliminating membrane potentials and causing severe cytotoxicity. TpeV homologs are found near known T6SS genes in human, animal and plant bacterial pathogens, indicating that the toxin is a representative member of a broadly distributed protein family. We propose that TpeV-like toxins contribute to the fitness and pathogenicity of many bacteria. Finally, since antibiotic resistance is a critical global health threat, the discovery of new antimicrobial mechanisms could lead to the development of new treatments against resistant strains.
Bacteria from the Stenotrophomonas maltophilia complex (Smc) are important multidrug-resistant pathogens that cause a broad range of infections. Smc is genomically diverse and has been classified into 23 lineages. Lineage Sm6 is the most common among sequenced strains, but it is unclear why this lineage has evolved to be dominant. Antagonistic interactions can significantly affect the evolution of bacterial populations. These interactions may be mediated by secreted contact-dependent proteins, which allow inhibitor cells to intoxicate adjacent target bacteria. Contact-dependent inhibition (CDI) requires three proteins: CdiA, CdiB and CdiI. CdiA is a large, filamentous protein exported to the surface of inhibitor cells through the pore-like CdiB. The CdiA C-terminal domain (CdiA-CT) is toxic when delivered into target cells of the same species or genus. CdiI immunity proteins neutralize the toxicity of cognate CdiA-CT toxins. We found that all complete Smc genomes from the Sm6 lineage harbour at least one CDI locus. By contrast, less than a quarter of strains from other lineages have CDI genes. Smc CdiA-CT domains are diverse and have a broad range of predicted functions. Most Sm6 strains harbour non-cognate cdiI genes predicted to provide protection against foreign toxins from other strains. Finally, we demonstrated that an Smc CdiA-CT toxin has antibacterial properties and is neutralized by its cognate CdiI.
The type VI secretion system (T6SS) is a proteinaceous weapon used by many Gram-negative bacteria to deliver toxins into adjacent target cells. Vibrio cholerae, the bacterium responsible for the fatal water-borne cholera disease, uses the T6SS to evade phagocytic eukaryotes, cause intestinal inflammation, and compete against other bacteria with toxins that disrupt lipid membranes, cell walls and actin cytoskeletons. The control of T6SS genes varies among V. cholerae strains and typically includes inputs from external signals and cues, such as quorum sensing and chitin availability. In the following review, we highlight the repertoire of toxic T6SS effectors and the diverse genetic regulation networks among different isolates of V. cholerae. Finally, we discuss the roles played by the T6SS of V. cholerae in both natural environments and hosts.