Abstract Autologous dopamine (DA) neurons are a new cell source for replacement therapy of Parkinson’s disease (PD). In this study, we tested the safety and efficacy of autologous induced pluripotent stem cell (iPSC)-derived DA cells for treatment of a cynomolgus monkey PD model. Monkey bone marrow mesenchymal cells were isolated and induced to iPSCs, followed by differentiation into DA cells using a method with high efficiency. Autologous DA cells were introduced into the brain of a cynomolgus monkey PD model without immunosuppression; three PD monkeys that had received no grafts served as controls. The PD monkey that had received autologous grafts experienced behavioral improvement compared with that of controls. Histological analysis revealed no overgrowth of grafts and a significant number of surviving A9 region-specific graft-derived DA neurons. The study provided a proof-of-principle to employ iPSC-derived autologous DA cells for PD treatment using a nonhuman primate PD model.
The interplay between tumor-infiltrating immune cells and cancer cells affects cancer initiation, progression, and treatment. C chemokines are critically involved in immune cell chemotaxis, self-tolerance formation, antigen cross-presentation, and cytotoxic immune response. However, their roles in cancer development are still largely unknown.We comprehensively analyzed the expression, prognostic value, functions, and immune implication of C chemokines in clear cell renal cell carcinoma (ccRCC) using multiple databases. Besides, we detected the expression of C chemokines in RCC cell lines using quantitative real-time polymerase chain reaction (qPCR).Through analyzing The Cancer Genome Atlas (TCGA), Oncomine and Gene Expression Omnibus (GEO) ccRCC datasets, we found that C chemokines were significantly upregulated in ccRCC tumor tissues and associated with tumor progression. Besides, qPCR revealed the overexpression of C chemokines in RCC cell lines. Promoter hypomethylation was a potential factor causing the upregulation of C chemokines. ccRCC patients with higher levels of C chemokines had significantly poorer overall survival (OS), progression-free interval (PFI), and disease-specific survival (DSS). C chemokines and related genes were involved mainly in cytokine-cytokine receptor interactions and the chemokine signaling and Toll-like receptor signaling pathways. Correlation analysis revealed a positive correlation between C chemokines and the infiltration of 25 immune cell subtypes, many of which affected the prognosis of ccRCC. Moreover, C chemokines were positively correlated with the expression of genes associated with M2 macrophage polarization and T-cell exhaustion, and the expression of several immune checkpoints in ccRCC.Our research provides preliminary insights into the prognostic value and immune implication of C chemokines in ccRCC, which is conducive to the prediction of survival and immunotherapy response, and the development of novel therapeutic targets for ccRCC.
Abstract Background Stem cell-based therapy is a promising strategy for treating Parkinson’s disease (PD) characterized by the loss of dopaminergic neurons. Recently, induced neural stem cell-derived dopaminergic precursor cells (iNSC-DAPs) have been emerged as a promising candidate for PD cell therapy because of a lower tumor-formation ability. Designer receptors exclusively activated by designer drugs (DREADDs) are useful tools for examining functional synaptic connections with host neurons. Methods DREADD knock-in human iNSCs to express excitatory hM3Dq and inhibitory hM4Di receptors were engineered by CRISPR. The knock-in iNSCs were differentiated into midbrain dopaminergic precursor cells (DAPs) and transplanted into PD mice. The various behavior test such as the Apomorphine-induced rotation test, Cylinder test, Rotarod test, and Open field test were assessed at 4, 8, or 12 weeks post-transplantation with or without the administration of CNO. Electrophysiology were performed to assess the integrated condition and modulatory function to host neurons. Results DREADD expressing iNSC was constructed with normal neural stem cell characteristics, proliferation ability, and differentiation potential into dopaminergic neuorns. DAPs derived from DREADD expressing iNSC showed matched function upon administration of clozapine N-oxide (CNO) in vitro. The results of electrophysiology and behavioral tests of transplanted PD mouse models revealed that the grafts established synaptic connections with downstream host neurons and exhibited excitatory or inhibitory modulation in response to CNO in vivo. Conclusion iNSC-DAPs are a promising candidate for cell replacement therapy for Parkinson’s disease. Remote DREADD-dependent activation of iNSC-DAP neurons significantly enhanced the beneficial effects on transplanted mice with Parkinson’s disease.
Genome-wide association studies have identified susceptibility loci for esophageal squamous cell carcinoma (ESCC). We conducted a meta-analysis of all single-nucleotide polymorphisms (SNPs) that showed nominally significant P-values in two previously published genome-wide scans that included a total of 2961 ESCC cases and 3400 controls. The meta-analysis revealed five SNPs at 2q33 with P< 5 × 10−8, and the strongest signal was rs13016963, with a combined odds ratio (95% confidence interval) of 1.29 (1.19–1.40) and P= 7.63 × 10−10. An imputation analysis of 4304 SNPs at 2q33 suggested a single association signal, and the strongest imputed SNP associations were similar to those from the genotyped SNPs. We conducted an ancestral recombination graph analysis with 53 SNPs to identify one or more haplotypes that harbor the variants directly responsible for the detected association signal. This showed that the five SNPs exist in a single haplotype along with 45 imputed SNPs in strong linkage disequilibrium, and the strongest candidate was rs10201587, one of the genotyped SNPs. Our meta-analysis found genome-wide significant SNPs at 2q33 that map to the CASP8/ALS2CR12/TRAK2 gene region. Variants in CASP8 have been extensively studied across a spectrum of cancers with mixed results. The locus we identified appears to be distinct from the widely studied rs3834129 and rs1045485 SNPs in CASP8. Future studies of esophageal and other cancers should focus on comprehensive sequencing of this 2q33 locus and functional analysis of rs13016963 and rs10201587 and other strongly correlated variants.
Parkinson's disease (PD) is caused by degeneration of dopaminergic (DA) neurons at the substantia nigra pars compacta (SNpc) in the ventral mesencephalon (VM). Cell replacement therapy holds great promise for treatment of PD. Recently, induced neural stem cells (iNSCs) have emerged as a potential candidate for cell replacement therapy due to the reduced risk of tumor formation and the plasticity to give rise to region-specific neurons and glia. iNSCs can be reprogrammed from autologous somatic cellular sources, such as fibroblasts, peripheral blood mononuclear cells (PBMNCs) and various other types of cells. Compared with other types of somatic cells, PBMNCs are an appealing starter cell type because of the ease to access and expand in culture. Sendai virus (SeV), an RNA non-integrative virus, encoding reprogramming factors including human OCT3/4, SOX2, KLF4 and c-MYC, has a negative-sense, single-stranded, non-segmented genome that does not integrate into host genome, but only replicates in the cytoplasm of infected cells, offering an efficient and safe vehicle for reprogramming. In this study, we describe a protocol in which iNSCs are obtained by reprogramming PBMNCs, and differentiated into specialized VM DA neurons by a two-stage method. Then DA precursors are transplanted into unilaterally 6-hyroxydopamine (6-OHDA)-lesioned PD mouse models to evaluate the safety and efficacy for treatment of PD. This method provides a platform to investigate the functions and therapeutic effects of patient-specific DA neural cells in vitro and in vivo.
Concentrated decoction is one of the traditional Chinese medicine form based on TCM theory. In this paper, the production technology of concentrated decoctions was improved by combination of traditional craft with the actual production status of our hospital serving lean thinking as a guiding principle, so as to meet the demand of modern society and provide a reference for the production and quality control of concentrated decoctions.
Glioblastoma (GBM) is a common primary brain tumor with poor clinical prognosis. Although CAR-T therapy has been trialed for treatment of GBM, the outcomes are sub-optimal possibly due to exhaustion of T cells and life-threatening neurotoxicity. To address these issues, a combined therapeutic strategy was tested in the current study using GD2 CAR-T together with Nivolumab - an anti-PD-1 monoclonal antibody. An effector-to-target co-culture system was established to evaluate the short-term and long-term cytotoxicity of CAR-T, as well as to investigate the inhibitory activity and T cell exhaustion associated with the PD-1/PD-L1 signaling pathway. Orthotopic NOD/SCID GBM animal models were generated to evaluate the safety and efficacy of the combined therapeutic strategy at various dosages of GD2 CAR-T with Nivolumab. GD2 CAR-T exhibited significant antigen-specific cytotoxicity in a dose-dependent manner in vitro. The persistence of cytotoxicity of GD2 CAR-T could be enhanced by addition of Nivolumab in the co-culture system. Animal studies suggested that GD2 CAR-T effectively infiltrated into tumor tissue and significantly hampered tumor progression. The optimal therapeutic outcome was obtained via using the medium dosage of CAR-T with Nivolumab, which displayed the highest efficacy in extending the survival up to 60 days. Further investigation of toxicity revealed that high-dosage of GD2 CAR-T could induce tumor apoptosis through p53/caspase-3/PARP signaling pathway. This study suggests that GD2 CAR-T in combination with Nivolumab may offer an improved therapeutic strategy for treatment of GBM.
Abstract Oesophageal cancer is one of the most lethal malignancies worldwide, whereas the 5‐year survival is less than 20%. Although the detailed carcinogenic mechanisms are not totally clear, recent genomic sequencing data showed dysregulation of Hippo signalling could be a critical factor for oesophageal squamous cell carcinoma (ESCC) progression. Therefore, understanding of the molecular mechanisms that control Hippo signalling activity is of great importance to improve ESCC diagnostics and therapeutics. Our current study revealed RACO‐1 as an inhibitory protein for YAP/TEAD axis. Depletion of RACO‐1 increases the protein level of YAP and expression of YAP/TEAD target gene. Besides, RACO‐1 silencing could promote ESCC cell invasion and migration, which effect could be rescued by YAP depletion in ESCC cells. Immunoprecipitation showed that RACO‐1 associated with YAP and promote ubiquitination and degradation of YAP at k48 poly‐ubiquitination site. Our research discovered a new regulator of Hippo signalling via modulating YAP stability. RACO‐1 could be a promising factor, which serves cancer diagnostics and therapeutics in ESCC patients.