Metal artefact reduction (MAR) techniques still are in limited use in positron emission tomography/computed tomography (PET/CT). This study aimed to investigate the effect of Smart MAR on quantitative PET analysis in the vicinity of hip prostheses.Activities were measured on PET/CT images in 6 sources with tenfold activity concentration contrast to background, attached to the head, neck and the major trochanter of a human cadaveric femur, and in the same sources in similar locations after a hip prosthesis (titanium cup, ceramic head, chrome-cobalt stem) had been inserted into the femur. Measurements were compared between PET attenuation corrected using either conventional or MAR CT. In 38 patients harbouring 49 hip prostheses, standardized uptake values (SUV) in 6 periprosthetic regions and the bladder were compared between PET attenuation corrected with either conventional or MAR CT.Using conventional CT, measured activity decreased with 2 to 13% when the prosthesis was inserted. Use of MAR CT increased measured activity by up to 11% compared with conventional CT and reduced the relative difference with the reference values to under 5% in all sources. In all regions, to the exception of the prosthesis shaft, SUVmean increased significantly (p < 0.001) by use of MAR CT. Median (interquartile range) percentual increases of SUVmean were 1.4 (0.0-4.2), 4.0 (1.8-7.8), 7.8 (4.1-12.4), 1.5 (0.0-3.2), 1.4 (0.8-2.8) in acetabulum, lateral neck, medial neck, lateral diaphysis and medial diaphysis, respectively. Except for the shaft, the coefficient of variation did not increase significantly. Except for the erratic changes in the prosthesis shaft, decreases in SUVmean were rare and small. Bladder SUVmean increased by 0.9% in patients with unilateral prosthesis and by 4.1% in patients with bilateral prosthesis.In a realistic hip prosthesis phantom, Smart MAR restores quantitative accuracy by recovering counts in underestimated sources. In patient studies, Smart MAR increases SUV in all areas surrounding the prosthesis, most markedly in the femoral neck region. This proves that underestimation of activity in the PET image is the most prevalent effect due to metal artefacts in the CT image in patients with hip prostheses. Smart MAR increases SUV in the urinary bladder, indicating effects at a distance from the prosthesis.
This paper describes the National Electrical Manufacturers Association (NEMA) system performance of the Discovery MI 3-ring PET/CT (GE Healthcare) installed in Bruges, Belgium. This time-of-flight (TOF) PET camera is based on silicon photomultipliers instead of photomultiplier tubes.The NEMA NU2-2012 standard was used to evaluate spatial resolution, sensitivity, image quality (IQ) and count rate curves of the system. Timing and energy resolution were determined.Full width at half maximum (FWHM) of spatial resolution in radial, tangential and axial direction was 4.69, 4.08 and 4.68 mm at 1 cm; 5.58, 4.64 and 5.83 mm at 10 cm; and 7.53, 5.08 and 5.47 mm at 20 cm from the centre of the field of view (FOV) for the filtered backprojection reconstruction. For non-TOF ordered subset expectation maximization (OSEM) reconstruction without point spread function (PSF) correction, FWHM was 3.87, 3.69 and 4.15 mm at 1 cm; 4.80, 3.81 and 4.87 mm at 10 cm; and 7.38, 4.16 and 3.98 mm at 20 cm. Sensitivity was 7.258 cps/kBq at the centre of the FOV and 7.117 cps/kBq at 10-cm radial offset. Contrast recovery (CR) using the IQ phantom for the TOF OSEM reconstruction without PSF correction was 47.4, 59.3, 67.0 and 77.0% for the 10-, 13-, 17- and 22-mm radioactive spheres and 82.5 and 85.1% for the 28- and 37-mm non-radioactive spheres. Background variability (BV) was 16.4, 12.1, 9.1, 6.6, 5.1 and 3.8% for the 10-, 13-, 17-, 22-, 28- and 37-mm spheres. Lung error was 8.5%. Peak noise equivalent count rate (NECR) was 102.3 kcps at 23.0 kBq/ml with a scatter fraction of 41.2%. Maximum accuracy error was 3.88%. Coincidence timing resolution was 375.6 ps FWHM. Energy resolution was 9.3% FWHM. Q.Clear reconstruction significantly improved CR and reduced BV compared with OSEM.System sensitivity and NECR are lower and IQ phantom's BV is higher compared with larger axial FOV (AFOV) scanners like the 4-ring discovery MI, as expected from the smaller solid angle of the 3-ring system. The other NEMA performance parameters are all comparable with those of the larger AFOV scanners.
Abstract Background Metal artefact reduction (MAR) techniques still are in limited use in positron emission tomography / computed tomography (PET/CT). This study aimed to investigate the effect of Smart MAR on quantitative PET analysis in the vicinity of hip prostheses. Material and methods Activities were measured on PET/CT images in 6 sources with 10-fold activity concentration contrast to background, attached to the head, neck and the major trochanter of a human cadaveric femur, and in the same sources in similar locations after a hip prosthesis (titanium cup, ceramic head, chrome-cobalt stem) had been inserted into the femur. Measurements were compared between PET attenuation corrected using either conventional or MAR CT. In 46 patients harbouring 61 hip prostheses, standardized uptake values (SUV) in 6 periprosthetic regions and the bladder, were compared between PET attenuation corrected with either conventional or MAR CT. Results Using conventional CT, measured activity decreased from 2 to 13% when the prosthesis was inserted. Use of MAR CT increased measured activity by up to 11 12% compared with conventional CT and reduced the relative difference with the reference values to under 5% in all sources.In all regions, to the exception of the prosthesis shaft, SUV mean increased significantly (p<0.001) by use of MAR CT. Median (interquartile range) percentual increases of SUV mean were 1.9 (0.0-4.5), 3.9 (1.8-7.8), 7.0 (3.4-11.1), 1.7 (0.9-3.7), 1.5 (0.8-3.3) in acetabulum, lateral neck, medial neck, lateral diaphysis and medial diaphysis, respectively. Except for the shaft, the coefficient of variation did not increase significantly. Except for the erratic changes in the prosthesis shaft, decreases of SUV mean were rare and small. Bladder SUV mean increased by 1% in patients with unilateral and by 4% in patients with bilateral prosthesis. Conclusions In a realistic hip prosthesis phantom, Smart MAR restores quantitative accuracy by recovering counts in underestimated sources. In patient studies, Smart MAR increases SUV in all areas surrounding the prosthesis, most markedly in the femoral neck region. This proves that underestimation of activity is the most prevalent metal artefact in hip prostheses. Smart MAR increases SUV in the urinary bladder, indicating effects at a distance from the prosthesis.