Garnet-type solid-state electrolytes (SSEs) show great potential because of high ionic conductivity and steadiness against metallic Li. However, the unstable property of garnet in air and poor interface contact with Li metal dramatically influence the electrochemical performance. In this manuscript, TiO2 gel is coated on the surface of Li6.75La3Zr1.75Ta0.25O12 (LLZTO) pellets by a spin coating process, to remove the surface impurity and in-situ construct an air-stable and lithiophilic LixTiyOz (LTO) layer on the garnet electrolyte surface. The LTO interface layer acts as a critical role in the interface resistance reduction and suppression of Li dendrite growth. The low interfacial resistance (18.4 Ω cm2) in Li|LTO@LLZTO|Li symmetric cells manifests good wettability. Density functional theory (DFT) calculation results indicate that the modification layer owns higher work of adhesion and interfacial energy, suggesting excellent stability and inhibition in Li dendrite growth. Specifically, the Li symmetric cells with LTO-modified electrolyte show an enhanced current density of 0.9 mA cm-2 and outstanding capability to survive long cycling over 5000 h at 0.1 mA cm-2. The assembled LiFePO4-based full cell displays both high reversible capacity and cycling capability. This work provides a promising strategy to take advantage of interfacial Li2CO3 impurities on the garnet electrolytes.
Background: Gene regulatory networks control tissue homeostasis and disease progression in a cell type–specific manner. Ubiquitously expressed chromatin regulators modulate these networks, yet the mechanisms governing how tissue specificity of their function is achieved are poorly understood. BRD4 (bromodomain-containing protein 4), a member of the BET (bromo- and extraterminal domain) family of ubiquitously expressed acetyl-lysine reader proteins, plays a pivotal role as a coactivator of enhancer signaling across diverse tissue types in both health and disease and has been implicated as a pharmacological target in heart failure. However, the cell-specific role of BRD4 in adult cardiomyocytes remains unknown. Methods: We combined conditional mouse genetics, unbiased transcriptomic and epigenomic analyses, and classic molecular biology and biochemical approaches to understand the mechanism by which BRD4 in adult cardiomyocyte homeostasis. Results: Here, we show that cardiomyocyte-specific deletion of Brd4 in adult mice leads to acute deterioration of cardiac contractile function with mutant animals demonstrating a transcriptomic signature characterized by decreased expression of genes critical for mitochondrial energy production. Genome-wide occupancy data show that BRD4 enriches at many downregulated genes (including the master coactivators Ppargc1a, Ppargc1b , and their downstream targets) and preferentially colocalizes with GATA4 (GATA binding protein 4), a lineage-determining cardiac transcription factor not previously implicated in regulation of adult cardiac metabolism. BRD4 and GATA4 form an endogenous complex in cardiomyocytes and interact in a bromodomain-independent manner, revealing a new functional interaction partner for BRD4 that can direct its locus and tissue specificity. Conclusions: These results highlight a novel role for a BRD4-GATA4 module in cooperative regulation of a cardiomyocyte-specific gene program governing bioenergetic homeostasis in the adult heart.
Circulating corticosteroids orchestrate stress adaptation, including inhibition of inflammation. While pathways governing corticosteroid biosynthesis and intracellular signaling are well understood, less is known about mechanisms controlling plasma corticosteroid transport. Here, we show that hepatocyte KLF15 (Kruppel-like factor 15) controls plasma corticosteroid transport and inflammatory responses through direct transcriptional activation of
Abstract Lithium‐rich manganese‐based layered oxides (LMLOs) are considered to be one type of the most promising materials for next‐generation cathodes of lithium batteries due to their distinctive anionic redox processes contributing ultrahigh capacity and energy density. Unfortunately, their practical applications are still plagued by several challenges such as undesirable interfacial reactions and structural evolution, as well as voltage hysteresis/recession, in which irreversible anionic redox behavior bears the brunt as the primacy factor. Undoubtedly, a deep understanding of anionic redox reaction mechanisms and irreversible behavior of oxygen species is crucial in order to provide essential guidance for modification strategies for LMLOs. In this paper, the fundamental understanding of intricate anionic redox reaction mechanisms from thermodynamics models to kinetic anionic redox reaction pathways is comprehensively reviewed, and the existing challenges of LMLOs related with irreversible oxygen reaction behavior are analyzed. Furthermore, numerous representative modification strategies for overcoming these challenges, coupled with their underlying mechanisms for regulating anionic redox reversibility are summarized. In addition, the aspects of multi‐scale structural modifications, integration of interdisciplinary technologies, and application in quasi‐/all‐solid‐state battery systems are given some emphasis in terms of further improvement of LMLOs‐based cathode materials for advanced lithium batteries‐based energy storage systems.
The Na/K-ATPase is the specific receptor for cardiotonic steroids (CTS) such as ouabain and digoxin. At pharmacological concentrations used in the treatment of cardiac conditions, CTS inhibit the ion-pumping function of Na/K-ATPase. At much lower concentrations, in the range of those reported for endogenous CTS in the blood, they stimulate hypertrophic growth of cultured cardiac myocytes through initiation of a Na/K-ATPase-mediated and reactive oxygen species (ROS)-dependent signaling. To examine a possible effect of endogenous concentrations of CTS on cardiac structure and function in vivo, we compared mice expressing the naturally resistant Na/K-ATPase α1 and age-matched mice genetically engineered to express a mutated Na/K-ATPase α1 with high affinity for CTS. In this model, total cardiac Na/K-ATPase activity, α1, α2, and β1 protein content remained unchanged, and the cardiac Na/K-ATPase dose–response curve to ouabain shifted to the left as expected. In males aged 3–6 months, increased α1 sensitivity to CTS resulted in a significant increase in cardiac carbonylated protein content, suggesting that ROS production was elevated. A moderate but significant increase of about 15% of the heart-weight-to-tibia-length ratio accompanied by an increase in the myocyte cross-sectional area was detected. Echocardiographic analyses did not reveal any change in cardiac function, and there was no fibrosis or re-expression of the fetal gene program. RNA sequencing analysis indicated that pathways related to energy metabolism were upregulated, while those related to extracellular matrix organization were downregulated. Consistent with a functional role of the latter, an angiotensin-II challenge that triggered fibrosis in the α1r/rα2s/s mouse failed to do so in the α1s/sα2s/s. Taken together, these results are indicative of a link between circulating CTS, Na/K-ATPase α1, ROS, and physiological cardiac hypertrophy in mice under baseline laboratory conditions.
ABSTRACT Long intergenic non-coding RNAs (lincRNAs) have been implicated in gene regulation, but their requirement for development needs empirical interrogation. We computationally identified nine murine lincRNAs that have developmentally regulated transcriptional and epigenomic profiles specific to early heart differentiation. Six of the nine lincRNAs had in vivo expression patterns supporting a potential function in heart development, including a transcript downstream of the cardiac transcription factor Hand2, which we named Handlr (Hand2-associated lincRNA), Rubie and Atcayos. We genetically ablated these six lincRNAs in mouse, which suggested genomic regulatory roles for four of the cohort. However, none of the lincRNA deletions led to severe cardiac phenotypes. Thus, we stressed the hearts of adult Handlr and Atcayos mutant mice by transverse aortic banding and found that absence of these lincRNAs did not affect cardiac hypertrophy or left ventricular function post-stress. Our results support roles for lincRNA transcripts and/or transcription in the regulation of topologically associated genes. However, the individual importance of developmentally specific lincRNAs is yet to be established. Their status as either gene-like entities or epigenetic components of the nucleus should be further considered.
Despite current standard of care, the average 5-year mortality after an initial diagnosis of heart failure (HF) is about 40%, reflecting an urgent need for new therapeutic approaches. Previous studies demonstrated that the epigenetic reader protein bromodomain-containing protein 4 (BRD4), an emerging therapeutic target in cancer, functions as a critical coactivator of pathologic gene transactivation during cardiomyocyte hypertrophy. However, the therapeutic relevance of these findings to human disease remained unknown. We demonstrate that treatment with the BET bromodomain inhibitor JQ1 has therapeutic effects during severe, preestablished HF from prolonged pressure overload, as well as after a massive anterior myocardial infarction in mice. Furthermore, JQ1 potently blocks agonist-induced hypertrophy in human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Integrated transcriptomic analyses across animal models and human iPSC-CMs reveal that BET inhibition preferentially blocks transactivation of a common pathologic gene regulatory program that is robustly enriched for NFκB and TGF-β signaling networks, typified by innate inflammatory and profibrotic myocardial genes. As predicted by these specific transcriptional mechanisms, we found that JQ1 does not suppress physiological cardiac hypertrophy in a mouse swimming model. These findings establish that pharmacologically targeting innate inflammatory and profibrotic myocardial signaling networks at the level of chromatin is effective in animal models and human cardiomyocytes, providing the critical rationale for further development of BET inhibitors and other epigenomic medicines for HF.