An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Syngas (CO and H2) is an essential raw material for producing various chemicals in industry. The reduction of CO2 in a water-containing system can serve as a more sustainable pathway to obtain syngas than the transformation of fossil fuels, while the modulation of the H2/CO ratios is a challenge. Herein a nickel(II) tripodal complex is employed as a homogeneous electrocatalyst for CO2 and H2O reduction. With this catalyst, selective CO formation with negligible H2 evolution can be accomplished in the presence of 5.0 M H2O in N,N′-dimethylformamide (DMF). By further varying the applied potentials, the H2/CO ratio can be delicately tuned. The catalyst is appreciably robust with a high turnover number of 1.9 × 106 in 1 day operation with negligible deactivation, which can be attributed to the redox innocence of the used ligand. Based on the results of electrochemistry and DFT calculation, the catalytic mechanism is proposed.
The large production volumes of commodity polyolefins (specifically, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride)), in conjunction with their low unit values and multitude of short-term uses, have resulted in a significant and pressing waste management challenge. Only a small fraction of these polyolefins is currently mechanically recycled, with the rest being incinerated, accumulating in landfills, or leaking into the natural environment. Since polyolefins are energy-rich materials, there is considerable interest in recouping some of their chemical value while simultaneously motivating more responsible end-of-life management. An emerging strategy is catalytic depolymerization, in which a portion of the C-C bonds in the polyolefin backbone is broken with the assistance of a catalyst and, in some cases, additional small molecule reagents. When the products are small molecules or materials with higher value in their own right, or as chemical feedstocks, the process is called upcycling. This review summarizes recent progress for four major catalytic upcycling strategies: hydrogenolysis, (hydro)cracking, tandem processes involving metathesis, and selective oxidation. Key considerations include macromolecular reaction mechanisms relative to small molecule mechanisms, catalyst design for macromolecular transformations, and the effect of process conditions on product selectivity. Metrics for describing polyolefin upcycling are critically evaluated, and an outlook for future advances is described.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Abstract There is a demand to develop molecular catalysts promoting the hydrogen evolution reaction (HER) with a high catalytic rate and a high tolerance to various inhibitors, such as CO and O 2 . Herein we report a cobalt catalyst with a penta‐dentate macrocyclic ligand ( 1‐Co ), which exhibits a fast catalytic rate (TOF=2210 s −1 ) in aqueous pH 7.0 phosphate buffer solution, in which proton transfer from a dihydrogen phosphate anion (H 2 PO 4 − ) plays a key role in catalytic enhancement. The electrocatalyst exhibits a high tolerance to inhibitors, displaying over 90 % retention of its activity under either CO or air atmosphere. Its high tolerance to CO is concluded to arise from the kinetically labile character of undesirable CO‐bound species due to the geometrical frustration posed by the ligand, which prevents an ideal trigonal bipyramid being established.
Abstract The reduction of carbon dioxide (CO 2 ) has been considered as an approach to mitigate global warming and to provide renewable carbon‐based fuels. Rational design of efficient, selective, and inexpensive catalysts with low overpotentials is urgently desired. In this study, four cobalt(II) tripodal complexes are tested as catalysts for CO 2 reduction to CO in a MeCN/H 2 O (4:1 v / v ) solution. The replacement of pyridyl groups in the ligands with less basic quinolinyl groups greatly reduces the required overpotential for CO 2 ‐to‐CO conversion down to 200–380 mV. Benefitting from the low overpotentials, a photocatalyst system for CO 2 ‐to‐CO conversion is successfully constructed, with an maximum turnover number (TON) of 10 650±750, a turnover frequency (TOF) of 1150±80 h −1 , and almost 100 % selectivity to CO. These outstanding catalytic performances are further elucidated by DFT calculations.