High-aspect-ratio structures have become increasingly important in MEMS devices. In situ, real-time critical dimension and depth measurement for high-aspect-ratio structures is critical for optimizing the deep etching process. Through-focus scanning optical microscopy (TSOM) is a high-throughput and inexpensive optical measurement method for critical dimension and depth measurement. Thus far, TSOM has only been used to measure targets with dimension of 1 μm or less, which is far from sufficient for MEMS. Deep learning is a powerful tool that improves the TSOM performance by taking advantage of additional intensity information. In this work, we propose a convolutional neural network model-based TSOM method for measuring individual high-aspect-ratio trenches on silicon with width up to 30 μm and depth up to 440 μm. Experimental demonstrations are conducted and the results show that the proposed method is suitable for measuring the width and depth of high-aspect-ratio trenches with a standard deviation and error of approximately a hundred nanometers or less. The proposed method can be applied to the semiconductor field.
As the electronic interconnection between chips, microbumps are crucial components in advanced packaging for the demand of better performance and higher packaging density. The height and coplanarity of microbumps are critical to ensure the reliability of connections. The poor uniformity in bump height will lead to disconnect or insufficient contact, which will directly result in the failure of the chip's function and a lower yield rate. In this paper, we proposed a height measurement method of microbumps using white-light triangulation combined with geometrical characteristics of bumps. A linear light projection module composed of a lens group and LED light source was set up as well as a high-quality imaging module consisting of a CCD camera and microscope objective group. The projection and imaging model of microbumps illuminated by the light plane at different positions during the scanning process was analyzed. The microbump height is computed from a simple formula based on the geometry of the specimen and the system configuration. The measurement results are compared with that obtained from a commercial optical profiler, and the measurement uncertainty is analyzed in detail.
Abstract Fluorescent copper nanoclusters (CuNCs) have been widely used in chemical sensors, biological imaging, and light‐emitting devices. However, individual fluorescent CuNCs have limitations in their capabilities arising from poor photostability and weak emission intensities. As one kind of aggregation‐induced emission luminogen (AIEgen), the formation of aggregates with high compactness and good order can efficiently improve the emission intensity, stability, and tunability of CuNCs. Here, DNA nanoribbons, containing multiple specific binding sites, serve as a template for in situ synthesis and assembly of ultrasmall CuNCs (0.6 nm). These CuNC self‐assemblies exhibit enhanced luminescence and excellent fluorescence stability because of tight and ordered arrangement through DNA nanoribbons templating. Furthermore, the stable and bright CuNC assemblies are demonstrated in the high‐sensitivity detection and intracellular fluorescence imaging of biothiols.
Tetrahedral DNA nanostructures (TDNs) are programmable DNA nanostructures that have great potential in bio-sensing, cell imaging and therapeutic applications. In this study, we investigate the translocation behavior of individual TDNs through solid-state nanopores. Pronounced translocation signals for TDNs are observed that are sensitive to the size of the nanostructures. TDNs bound to linear DNA molecules produce an extra signal in the ionic current traces. Statistical analysis of its relative temporal position reveals distinct features between TDNs bound to the end and those bound to the middle of the linear DNA molecules. A featured current trace for two TDNs bound to the same linear DNA molecule has also been observed. Our study demonstrates the potential of using TDNs as sensitive bio-sensors to detect specific segments of a single DNA molecule in real time, based on solid-state nanopore devices.
In situ synthesis of DNA origami structures in living systems is highly desirable due to its potential in biological applications, which nevertheless is hampered by the requirement of thermal activation procedures. Here, we report a photothermal DNA origami assembly method in near-physiological environments. We find that the use of copper sulfide nanoparticles (CuS NPs) can mediate efficient near-infrared (NIR) photothermal conversion to remotely control the solution temperature. Under a 4 min NIR illumination and subsequent natural cooling, rapid and high-yield (>80%) assembly of various types of DNA origami nanostructures is achieved as revealed by atomic force microscopy and single-molecule fluorescence resonance energy transfer analysis. We further demonstrate the in situ assembly of DNA origami with high location precision in cell lysates and in cell culture environments.
Abstract Fluorescent copper nanoclusters (CuNCs) have been widely used in chemical sensors, biological imaging, and light‐emitting devices. However, individual fluorescent CuNCs have limitations in their capabilities arising from poor photostability and weak emission intensities. As one kind of aggregation‐induced emission luminogen (AIEgen), the formation of aggregates with high compactness and good order can efficiently improve the emission intensity, stability, and tunability of CuNCs. Here, DNA nanoribbons, containing multiple specific binding sites, serve as a template for in situ synthesis and assembly of ultrasmall CuNCs (0.6 nm). These CuNC self‐assemblies exhibit enhanced luminescence and excellent fluorescence stability because of tight and ordered arrangement through DNA nanoribbons templating. Furthermore, the stable and bright CuNC assemblies are demonstrated in the high‐sensitivity detection and intracellular fluorescence imaging of biothiols.
Abstract Variations on DNA sequences profoundly affect how we develop diseases and respond to pathogens and drugs. Atomic force microscopy (AFM) provides a nanomechanical imaging approach for genetic analysis with nanometre resolution. However, unlike fluorescence imaging that has wavelength-specific fluorophores, the lack of shape-specific labels largely hampers widespread applications of AFM imaging. Here we report the development of a set of differentially shaped, highly hybridizable self-assembled DNA origami nanostructures serving as shape IDs for magnified nanomechanical imaging of single-nucleotide polymorphisms. Using these origami shape IDs, we directly genotype single molecules of human genomic DNA with an ultrahigh resolution of ∼10 nm and the multiplexing ability. Further, we determine three types of disease-associated, long-range haplotypes in samples from the Han Chinese population. Single-molecule analysis allows robust haplotyping even for samples with low labelling efficiency. We expect this generic shape ID-based nanomechanical approach to hold great potential in genetic analysis at the single-molecule level.