Objective Chronic kidney disease (CKD) patients are more likely to die from cardiovascular disease (CVD) than develop renal failure. This study aimed to develop a new nomogram for predicting the risk of cardiovascular death in CKD patients. Methods This study enrolled 1656 CKD patients from NHANES 2003 to 2006 survey. Data sets from 2005 to 2006 survey population were used to build a nomogram for predicting the risk of cardiovascular death, and the nomogram was validated using data from 2003 to 2004 survey population. To identify the main determinants of cardiovascular death, we performed univariate analysis and backward-stepwise regression to select the key factors. The probability of cardiovascular death for each patient in 5, 7, and 9 years was calculated using a nomogram based on the predictors. To assess the nomogram’s performance, the area under receiver operating characteristic curve (AUC) and the calibration curve with 1,000 bootstraps resamples were utilized. The prediction model’s discrimination was examined using cumulative incidence function (CIF). Results Age, homocysteine, potassium levels, CKD stage, and anemia were included in the nomogram after screening risk factors using univariate analysis and backward-stepwise regression. Internal validation revealed that this nomogram possesses high discrimination and calibration (AUC values of 5–, 7–, and 9-years were 0.79, 0.81, and 0.81, respectively). External validation confirmed the same findings (AUC values of 5–, 7– and 9-years were 0.76, 0.73, and 0.73, respectively). According to CIF, the established nomogram effectively differentiates patients at a high risk of cardiovascular death from those at low risk. Conclusion This work develops a novel nomogram that integrates age, homocysteine, potassium levels, CKD stage, and anemia and can be used to more easily predict cardiovascular death in CKD patients, highlighting its potential value in clinical application.
Background: To anticipate the potential molecular mechanism of Astragalus membranaceus (AM) and its monomer, Calycosin, against peritoneal fibrosis (PF) and related muscle atrophy using mRNA-seq, network pharmacology, and serum pharmacochemistry. Methods: Animal tissues were examined to evaluate a CKD-PF mice model construction. mRNA sequencing was performed to find differential targets. The core target genes of AM against PF were screened through network pharmacology analysis, and CKD-PF mice models were given high- and low-dose AM to verify common genes. Serum pharmacochemistry was conducted to clarify which components of AM can enter the blood circulation, and the selected monomer was further validated through cell experiments for the effect on PF and mesothelial mesenchymal transition (MMT) of peritoneal mesothelial cells (PMCs). Results: The CKD-PF mice models were successfully constructed. A total of 31,184 genes were detected in the blank and CKD-PF groups, and 228 transcription factors had significant differences between the groups. Combined with network pharmacology analysis, a total of 228 AM-PF-related targets were identified. Androgen receptor (AR) was the remarkable transcription factor involved in regulating transforming growth factor-β1 (TGF-β1). AM may be involved in regulating the AR/TGF-β1 signaling pathway and may alleviate peritoneal dialysis-related fibrosis and muscle atrophy in CKD-PF mice. In 3% peritoneal dialysis solution-stimulated HMrSV5 cells, AR expression levels were dramatically reduced, whereas TGF-β1/p-smads expression levels were considerably increased. Conclusion: AM could ameliorate PF and related muscle atrophy via the co-target AR and modulated AR/TGF-β1 pathway. Calycosin, a monomer of AM, could partially reverse PMC MMT via the AR/TGF-β1/smads pathway. This study explored the traditional Chinese medicine theory of “same treatment for different diseases,” and supplied the pharmacological evidence of “AM can treat flaccidity syndrome.”
Background Peritoneal fibrosis (PF) causes peritoneal dialysis (PD) withdrawal due to ultrafiltration failure. Qixue Huazheng formula (QXHZF), comprising Astragalus membranaceus , Centella asiatica , and Ligusticum sinense , is applied to treat PD-related peritoneum injury related; however, the active components, core genes, and underlying mechanism involved remain unclear. Methods The anti-PF effects of QXHZF were verified in vivo and in vitro . Targets underlying QXHZF-mediated improvement of PD-induced PF were predicted using network pharmacology analysis. Metabolites associated with QXHZF treatment of PD-related PF were analyzed by serum metabolomics. Integration of network pharmacology and serum metabolomics findings identified potentially important pathways, metabolites, and targets, and molecular docking studies confirmed the interactions of key components and targets. Western blotting (WB), quantitative real-time PCR (qRT-PCR), TdT-mediated dUTP Nick-End Labeling (TUNEL) staining, and flow cytometry were conducted. Results QXHZF had potent therapeutic efficacy against PF according to WB, qRT-PCR, and pathological section examination. Network pharmacological analysis indicated that multiple QXHZF compounds contributed to improving PF by modulating various targets and pathways. Differential metabolites were identified by serum metabolomics analysis. Integrated data analysis indicated that steroid hormone biosynthesis, the Ras signaling pathway, apoptosis, and estrogen signaling contributed to the effects of QXHZF. Metabolite-target network and molecular docking analyses revealed that QXHZF can bind to estrogen receptor 1 (ESR1) and rapidly accelerated fibrosarcoma 1 (RAF1) through its components. WB demonstrated that QXHZF treatment reversed activation of the above-mentioned signaling pathways, thereby inhibiting PD fluid-induced PF. Conclusion QXHZF can significantly ameliorate PD-induced PF and may regulate estrogen signaling, the Ras pathway, and apoptosis in this context.
Acute kidney injury (AKI) is a global public health hazard with high morbidity and mortality. Sepsis accounts for nearly half of all causes of AKI. Scientists have made a great effort to explore effective therapeutic agents with limited side effects in the treatment of AKI, but have had little success. With the development of gut flora study, Akkermansia muciniphila (A. muciniphila) has been proven to prevent different organs by regulating the inflammatory response. However, the reno-protective function is still unknown. Here, the AKI model was induced using lipopolysaccharide (LPS) in mice with or without pretreatment of A. muciniphila. Renal function and histological change were measured. Inflammatory factors were detected by ELISA and rt-PCR. TLR4/NF-κB signaling factors and NLRP3 inflammasome were tested by western blot and immunohistochemistry. Pretreatment of A. muciniphila markedly inhibited inflammatory response and ameliorated kidney histopathological changes. Furthermore, the TLR4, p-NF-κB p65, and downstream IκBα were notably activated in the model group and inhibited by A. muciniphila. A similar effect was found in the regulation of NLRP3 inflammasome. In conclusion, pretreatment with A. muciniphila could protect against LPS-induced AKI by inhibition of the TLR4/NF-κB pathway and NLRP3 inflammasome activation. It may be a new therapeutic strategy for AKI prevention and treatment in the future.
The epithelial-to-mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs) is a crucial event in the induction of peritoneal fibrosis (PF), in which canonical Wnt/β-catenin signaling participates. Smads signaling is reported to interact with β-catenin and synergistically regulates EMT. This study was aimed to reveal the effect of Astragalus on β-catenin in EMT of PMCs.To obtain the role of β-catenin in EMT, gene transfer into HMrSV5 cell line and rats has been achieved. After Astragalus treatment, EMT markers and signaling pathway-related indicators were detected by western blotting, immunofluorescence, immunohistochemistry, immunoprecipitation and real time-PCR.β-catenin knockdown suppressed EMT of HMrSV5 cells. Astragalus alleviated EMT of PMCs characterized by increased E-cadherin and decreased α-SMA and Vimentin. In rat model of peritoneal dialysis (PD), Astragalus attenuated peritoneal thickening and fibrosis. Astragalus down-regulated β-catenin by stabilizing the Glycogen synthase kinase-3β (GSK-3β)/β-catenin complex and further inhibited the nuclear translocation of β-catenin. Meanwhile, Astragalus down-regulated β-catenin by enhancing Smad7 expression. Silencing Smad7 antagonized the EMT-inhibitory effect of Astragalus.Astragalus inhibits EMT of PMCs by down-regulating β-catenin. The modulation of β-catenin in peritoneum can be a novel tool to prevent PF.
Angiogenesis of human peritoneal vascular endothelial cells (HPVECs), linked to vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) signaling, is a complication of peritoneal fibrosis (PF). Hippo/YAP signaling interacts with VEGF/VEGFR2 signaling, but the effect on peritoneal angiogenesis and PF has not been studied. We tested VEGF/Hippo/YAP inhibition by tetramethylpyrazine (TMP) in PF mice and HPVECs. This treatment ameliorated peritoneal dialysis (PD)–induced angiogenesis and PF. In mice, PF was associated with upregulation of VEGF, and TMP ameliorated submesothelial fibrosis, perivascular bleeding, and Collagen I abundance. In HPVECs, angiogenesis occurred due to human peritoneal mesothelial cells (HPMCs)–conditioned medium, and TMP alleviated HPVECs migration, tube formation, and YAP nuclear translocation. YAP knockdown PF mouse and HPVEC models were established to further confirm our finding. YAP deletion attenuated the PD-induced or VEGF-induced increase in angiogenesis and PF. The amount of CYR61 and CTGF was significantly less in the YAP knockdown group. To study the possibility that TMP could benefit angiogenesis, we measured the HPVECs migration and tube formation and found that both were sharply increased in YAP overexpression; TMP treatment partly abolished these increases. As well, the amount of VEGFR localized in the trans-Golgi network was lower by double immunofluorescence; VEGFR and its downstream signaling pathways including p-ERK, p-P38, and p-Akt were more in HPVECs with YAP overexpression. Overall, TMP treatment ameliorated angiogenesis, PF, and peritoneum injury. These changes were accompanied by inhibition of VEGF/Hippo/YAP.
As a potential source of myofibroblasts, pericytes may play a role in human peritoneal fibrosis. The culture of primary vascular pericytes in animals has previously been reported, most of which are derived from cerebral and retinal microvasculature. Here, in the field of peritoneal dialysis, we describe a method to isolate and characterize mouse peritoneal microvascular pericytes. The mesenteric tissues of five mice were collected and digested by type II collagenase and type I DNase. After cell attachment, the culture fluid was replaced with pericyte-conditioned medium. Pericytes with high purity (99.0%) could be isolated by enzymatic disaggregation combined with conditional culture and magnetic activated cell sorting. The primary cells were triangular or polygonal with protrusions, and confluent cell culture could be established in 3 days. The primary pericytes were positive for platelet-derived growth factor receptor-β, α-smooth muscle actin, neuron-glial antigen 2, and CD13. Moreover, they promoted formation of endothelial tubes, and pericyte-myofibroblast transition occurred after treatment with transforming growth factor-β1. In summary, we describe here a reproducible isolation protocol for primary peritoneal pericytes, which may be a powerful tool for in vitro peritoneal fibrosis studies.