Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit MiniprepTM (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.
The objective of this study was to investigate the effect of different tillage systems and nitrogen (N) fertilizers on corn yield. Higher corn yields (207 bu/a and 203 bu/a) were found under no-tillage + high (150 lb N/a) manure application, and tillage + super high manure (750 lb N/a), respectively. The trend observed for the different nitrogen fertilizers between tillage systems was the same. However, a greater corn yield was observed under no-till in comparison to tilled conditions for both high fertilizer and high manure. No-till improves soil water infiltration, aggregation, nutrient cycling, and may increase crop yield. On other hand, soil erosion, runoff, and a depreciated plant stand may have been the reasons for lower yields under tillage for some of the treatments. Overall, the addition of organic fertilizer associated with no-till was a better practice for increasing corn yield compared to the use of mineral fertilizer associated with or without tillage.
Globally, the amount of soil organic carbon (SOC) is more than twice that in the atmosphere or living vegetation. Loss of SOC accelerates soil health problems such as soil erosion and decreases soil aggregation. This chapter explores those issues and discusses various SOC measurement methods. Soil organic carbon is an extremely important soil health indicator because it influences almost all soil biological, chemical, and physical properties and processes. Development of conservation agriculture practices has increased SOC. These and other advancements in crop and soil management practices have the potential to restore and improve soil health. The biological benefits of SOC primarily relate to nutrient cycling by soil microorganisms for carbon and energy. The physical benefits of SOC relate to the formation and stabilization of soil aggregates. Several studies have reported high correlation between soil aggregation and SOC.
O desenvolvimento e a selecao de praticas agricolas tem sido um dos principais desafios para a sustentabilidade dos agroecossistemas frente ao aumento da demanda por alimentos. Nesse sentido, a utilizacao de sistemas conservacionistas, caracterizados pelo minimo disturbio do solo (sistema de plantio direto – SPD), permanente cobertura do solo e rotacao de culturas, pode promover uma melhoria na comunidade microbiana do solo, em comparacao com solos intensivamente revolvidos. Entretanto, nas principais regioes agricolas da America do Sul, o SPD tem sido frequentemente utilizado em desconjunto dos demais principios dos sistemas conservacionistas, deliberando extensas areas de monocultura. Portanto, e possivel esperar que a associacao do SPD e o aumento da diversidade de culturas agricolas empregadas no sistema de rotacao, venha a beneficiar a comunidade microbiana e atividade enzimatica do solo. Nesse sentido, foi hipotetizado que o SPD associado a uma rotacao de culturas frequente e diversificada pode beneficiar a composicao e a atividade microbiana do solo. O experimento foi implantado em 1985 (32 anos) em um Latossolo Vermelho Distrofico tipico em Cruz Alta – RS. O clima do local e subtropical umido (Cfa) com uma precipitacao media anual de 1774 mm e temperatura media de 25oC. Os tratamentos foram constituidos por dois sistemas de manejo de solo (SPD e plantio convencional) e tres sistemas de rotacao de culturas. Amostras de solo foram coletadas em tres profundidades: 0 a 5, 5 a 10 e 10 a 30 cm. A comunidade microbiana do solo foi acessada atraves dos acidos graxos fosfolipidicos (PLFA). A atividade das enzimas β-glucosidase, acid phosphatase e N-acetyl-glucosaminidase (biomarcadores da ciclagem do carbono, fosforo e nitrogenio, respectivamente), foi determinada atraves de fluorometria. A maior biomassa microbiana, soma de todos os biomarcadores PLFA, foi reportada na camada de 0 a 5 cm m sob SPD (40,19 nmol PLFA g-1 solo), enquanto no plantio convencional, na mesma camada, a biomassa microbiana foi de 25,41 nmol PLFA g-1 solo. Por outro lado, a biomassa microbiana do solo foi aumentada em profundidade (10 a 30 cm) pelo plantio convencional. Esse resultado pode ser suportado pelo incremento de carbono e nutrientes como Ca2+ e Mg2+ e, o declinio do teor de Al3+, como resultado da retencao de residuos de plantas e nutrientes na superficie do solo para o SPD, e da incorporacao desses residuos e nutrientes para o manejo convencional do solo. Alem disso, a associacao do SPD com o sistema de rotacao de culturas com maior diversidade de plantas, incrementou a atividade de todas as enzimas testadas na camada de 0 a 5 cm. Entretanto, a diferenca entre os sistemas de rotacao de culturas decresceu com a profundidade do solo e foi discreta sob plantio convencional. Os resultados indicam que o aumento da diversidade das plantas empregadas nos sistemas de rotacoes de culturas favorece a abundância da comunidade microbiana e a atividade das enzimas sob SPD.