Abstract Million tonnes of agricultural waste are generated annually worldwide. Agricultural wastes possess similar profiles to the main products but are lower in quality. Managing these agricultural wastes is costly and requires strict regulation to minimise environmental stress. Thus, these by-products could be repurposed for industrial use, such as alternative resources for aquafeed to reduce reliance on fish meal and soybean meal, fertilisers to enrich medium for growing live feed, antimicrobial agents, and immunostimulatory enhancers. Furthermore, utilising agricultural wastes and other products can help mitigate the existing environmental and economic dilemmas. Therefore, transforming these agricultural wastes into valuable products helps sustain the agricultural industry, minimises environmental impacts, and benefits industry players. Aquaculture is an important sector to supply affordable protein sources for billions worldwide. Thus, it is essential to explore inexpensive and sustainable resources to enhance aquaculture production and minimise environmental and public health impacts. Additionally, researchers and farmers need to understand the elements involved in new product development, particularly the production of novel innovations, to provide the highest quality products for consumers. In summary, agriculture waste is a valuable resource for the aquafeed industry that depends on several factors: formulation, costing, supply, feed treatment and nutritional value.
Carp farming is a popular aquaculture activity that provides affordable protein sources and job opportunities to many people worldwide. As carp farming intensifies, farmers face major issues such as rising feed costs and excessive antibiotic usage. Thus, there is an urgent need to explore alternative resources to ensure the sustainability of the carp farming industry. One of the most promising resources is phytobiotics that possess various properties beneficial for carp production. Furthermore, most phytobiotics are derived from agricultural waste that is abundant and cheap, but some phytobiotics are produced commercially and available in the market. The main topics of this review are highlighted sources, characteristics of phytobiotics, and the usefulness of phytobiotics in improving growth performance, feed utilization efficiency, antioxidant activity, and health of carps against diseases. Furthermore, in this review, recent methods of administration of phytobiotics such as through feeding, bathing, and intraperitoneal injection in carp farming are also discussed and summarised.
The identification and development of a new plant-based feed ingredient as an alternative protein source to FM have gained the interest of the aquafeed industrial players. Therefore, this study aimed to investigate the physical, biochemical, and bacteriological properties of dietary FWM and the impacts on the growth and reproductive performances of farmed female stinging catfish, H. fossilis broodstock. Five experimental diets were formulated with different FWM inclusion (0, 25, 50, 75, and 100%). Fatty acid profiles such as 4:0, 10:0, 20:0, 21:0, 22:0, 24:0, 20:1n9, 18:3n6, 20:3n6, 20:4n6, and 22:6n3 were found in higher levels in FWM compared to the water spinach meal (WM). Meanwhile, there were no significant differences in the physical properties of the FWM experimental diets (p > 0.05). Furthermore, the experimental feed with 0%, 25%, 50%, and 75% FWM were more palatable to the broodstock than 100% FWM. The number of total bacteria (TB) and lactic acid bacteria (LAB) in catfish diets exhibited a rising trend with an increase in FWM, while 50% of FWM-fed fish intestines had a significantly (p < 0.05) higher TB and LAB than other treatment groups. The growth, feed utilization, and reproductive variables of H. fossilis were significantly (p < 0.05) influenced by FWM inclusion at various levels. Moreover, the significantly (p < 0.05) highest oocytes weight, fertilization, egg ripeness, and ovipositor diameter were observed in the treatment of 50% FWM diet treatment group. In addition, the spawning response was 100% in all treatments except for the control group (66.67%). Significant differences (p < 0.05) were found in the hematological and serum biochemical indices in most treatment groups. In addition, the histological analysis of H. fossilis midintestinal tissue indicated that the fish fed with a 50% FWM diet had an unbroken epithelial barrier with more goblet cell arrangements and a well-organized villi structure and tunica muscularis compared to other treatment groups. These outcomes suggested that FWM at 50% inclusion is an adequate protein supplement for fish feed, resulting in better growth, reproductive performance, and health of H. fossilis broodstock development.
The study revealed the potential of fermented soybean meal (FSBM) as a fish meal (FM) replacement in African catfish (Clarias gariepinus) feed formulation. Five isonitrogenous diets (32% crude protein) were prepared with five different levels of FSBM as FM replacement, namely 0% FSBM (T1), 40% FSBM (T2), 50% FSBM (T3), 60% FSBM (T4), and 70% (T5). The experimental fish was given the formulated diet for eight consecutive weeks. At the end of the feeding trial, the fish were subjected to growth performance, blood parameters, blood chemical, liver histology, and gut microbiota assessment. The study findings demonstrated that the experimental fish that received the T2 diet exhibited significantly higher (p < 0.05) growth performance. Experimental fish that received diet T2 had significantly higher (p < 0.05) white blood cell (WBC) and significantly lower (p < 0.05) in terms of cholesterol (CHOL), albumin (ALB), globulin (GLOB), and total protein (TP). The replacement of FSBM to FM significantly affected liver morphology on the sinusoid, vacuole, nucleus, and erythrocytes. Gut microbiota composition analysis showed a significantly high abundance (p < 0.05) of Akkermansia muciniphila in the experimental fish that received the T2 diet. The gut microbiota indicates that the experimental fish is in a healthy condition. In conclusion, replacing 40% FSBM with FM in aquafeed could enhance C. gariepinus growth performance and health conditions.
This study investigated the impacts of various inclusion levels of dietary potential of fish protein hydrolysate (FPH) on the growth and reproductive performance, biochemical composition, blood parameters, and liver histology of Ompok pabda broodstock. About 600 pabda broods (11.00 ± 0.05 g) were distributed into 12 cages and fed twice in a day. For this, four experimental diets (crude protein: 30%; crude lipid: 9%) were prepared by incorporating FPH at different percentages (0%, 5%, 7%, and 9%). The FPH positively impacted ( ) the durability index, water stability, and swelling rates of the experimental diets. Furthermore, significantly higher palatability ( ) was recorded for pabda diets incorporated with 5% and 7% FPH. After 90 days, the growth performance of pabda in final weight, live weight gain, total biomass, specific growth rate, hepatosomatic index, visceral somatic index, and nutrient utilization indices, feed conversion ratio and protein efficiency ratio, was significantly ( ) improved when fed with 7% FPH diet. Additionally, the ovipositor diameter (5.10 ± 0.05 mm), spawning response (98.48 ± 2.4%), fecundity (13.28 ± 0.23 × 104 eggs/kg), and egg fertilization rate (87.09% ± 0.14%) were significantly higher ( ) for the 7% FPH dietary group than other treatments. The fish group that received control diet experienced a marked ( ) reduction in egg hatching rates, coupled with longer ovulation period as compared to FPH-treated groups. Dietary FPH inclusion at different levels also caused notable improvements ( ) in most hematological and serum biochemical indices of pabda broodfish. The 7% FPH group also exhibited enhanced liver health, characterized by superior nuclei, erythrocyte, and cytoplasmic structure and boosted the farm economics efficiency. In summary, 7% dietary FPH is suitable and beneficial for O. pabda broodstock development in captivity by improving growth and reproductive performance, overall health, and farm economics.
Aeromonas hydrophila is a ubiquitous bacterium with various hosts that causes mass mortality in farm-raised fish species and significant economic losses. The current antibiotic treatment is ineffective in controlling this bacterium infection in aquaculture species. Therefore, an evaluation of potential phytobiotics is needed to find an alternative antimicrobial agent to reduce the over-reliance on antibiotics in aquaculture and safeguard public and environmental health. Furthermore, the rise in antibiotic resistance cases among pathogenic bacteria indicates an urgent need for new fish and shellfish health management solutions. In this context, phytobiotics applications in aquaculture can be defined as any medicinal plant-based antimicrobial agent used in fish and shellfish health management. This review will focus on the impacts of Motile Aeromonas Septicemia (MAS) due to A. hydrophila in aquaculture, the potential of phytobiotics in enhancing the tolerance of aquaculture species against MAS and the combination of phytobiotics with other antimicrobial and therapeutic agents against MAS.
Carp is an important aquaculture species globally, and the production is expected to increase with the growing market demands. Despite that, disease outbreaks remain a major challenge, impeding the development of sustainable carp farming. Moreover, the application of antibiotics, a common prophylactic agent, can adversely impact public health and the environment. Therefore, polysaccharide has been recognized as a novel prophylactic agent in the health management of carp farming, as well as gaining consumers’ confidence in carp farming products. In this review, the definition, sources, and main roles of polysaccharides in improving growth performance, stimulating the immune system, enhancing disease resistance, and alleviating abiotic stresses in carp farming are discussed and summarized. In addition, the use of polysaccharides in combination with other prophylactic agents to improve carp farming production is also highlighted. This review aims to highlight the roles of polysaccharides and provide valuable information on the benefits of polysaccharides in carp farming.
Kos makanan ternakan merupakan sebahagian besar daripada kos operasi sesebuah perusahaan ternakan ikan. Harga bahan makanan ternakan komersil pula semakin meningkat akibat kos bahan mentah seperti tepung ikan yang semakin terhad dan mahal. Oleh itu, penternak ikan semakin proaktif dalam mencari sumber alternatif bagi memenuhi keperluan ternakan ikan mereka. Namun begitu, formulasi makanan ikan memerlukan ilmu serta teknik khas. Penerbitan ini bertindak sebagai panduan dan rujukan untuk semua golongan masyarakat terutamanya pengusaha ternakan ikan dan ahli akademik.
Insects such as black soldier fly larvae (BSFL) are gaining interest among researchers and the aquafeed industry due to the fluctuating price and supply of fish meal (FM). This study evaluated the growth performance, feed stability, blood biochemistry, and liver and gut morphology of Betta splendens using BSFL as an alternative to FM. Five formulated diets were prepared: 0% BSFL, 6.5% BSFL, 13% BSFL, 19.5% BSFL, and 24.5% BSFL. The expansion rate, pellet durability index, floatability, bulk density, and water stability of the prepared feed have been assessed. Except for the diameter of the feed, all the parameters studied differed significantly (