Birds are crucial in maintaining the balance of many ecosystems and provide various ecological services. Understanding their sensitivity to human disturbances should be prioritized in understudy areas for effective conservation practices. Using mist nets, this study characterized mostly understory bird communities (insectivorous, frugivorous, granivorous, and nectarivorous birds) in three habitat types (pristine forest, selectively logged forest, and young oil palm plantation) in the Talangaye rainforest, Southwest Cameroon. A total of 845 birds belonging to 27 families and 85 species were recorded in the three habitats after 294 h of mist netting. Overall, the mist-netted community was largely dominated by insectivores, followed by frugivores, nectarivores, granivores, and carnivores. Although mean species richness, abundance, and Simpson diversity index did not vary significantly among habitat types, mean species abundance and diversity index decreased in selectively logged forest and young oil palm plantation and species richness increased in both habitats. The species richness, abundance, and diversity index for insectivorous and frugivorous birds were lowest in the young oil palm plantations. For granivores, species richness and abundance increased following selective logging and the establishment of oil palm plantation. The highest mean species richness and diversity index in nectarivores were recorded in the young oil palm plantations. The study showed that selective logging and establishment of oil palm plantation had variable effects on the bird communities in the Talangaye rainforest. Also, the frugivorous birds appeared to be more sensitive to both types of disturbances, while the insectivores were more sensitive to habitat loss/conversion.
Abstract Birds time their life cycle events to favourable windows in environmental conditions. In tropical environments, where photoperiod variation is small, birds show high variability in the timing of life cycle stages, yet these species have been severely underrepresented in phenology research. Here, we investigated temporal patterns in bird life cycles and resource availability in two sites in tropical Africa: Weppa (Nigeria, 7° N) and Elat (Cameroon, 3° N). In these sites we captured common bulbuls ( Pycnonotus barbatus ), a widespread generalist, and recorded breeding and moult over a 12‐month period. Simultaneously, we surveyed fruiting tree and arthropod abundance. Our aim was to quantify seasonal patterns in moult and breeding in bulbuls at both sites, and link them to fluctuations in local fruit and arthropod abundance and precipitation. Moult was more seasonal than breeding in both sites, and seasonality of both life cycle events was stronger in Nigeria than Cameroon. The peak timing for moult was 1.5 months earlier in Nigeria than Cameroon. Seasonal variation in abundance of fruiting trees and arthropods was different between sites, as were the associations with breeding and moulting. In Nigeria, we found a positive association between moult and arthropod abundance, and a negative one with fruiting tree abundance. In contrast, in Cameroon moult was associated with higher precipitation, while breeding occurred at times with higher fruit abundance. Our results provide evidence that, even in similar habitats separated by four degrees in latitude, seasonal patterns across three trophic levels are variable. Understanding links between environmental conditions and life cycle events can reveal potential vulnerabilities of tropical species, and guide conservation efforts.
Haemoproteus species (Haemosporida, Haemoproteidae) are cosmopolitan blood parasites that affect bird fitness and health. Recent discoveries based on the application of molecular markers showed that exo-erythrocytic or tissue stages of haemoproteids damage various internal organs including the brain. However, the patterns of exo-erythrocytic development remain unclear for most of the described species. This study aimed to understand the exo-erythrocytic development of Haemoproteus parasites in naturally infected Thrush nightingales Luscinia luscinia (Muscicapidae). Infections were confirmed in eight bird individuals by microscopic examination and PCR-based methods. Organs were examined using histology and in situ hybridization, which applied genus-specific and lineage-specific oligonucleotide probes targeting the 18S rRNA of the parasites. Exo-erythrocytic meronts of Haemoproteus attenuatus (lineage hROBIN1) were found and described for the first known time in this avian host. Most meronts were seen in the lungs, with a few also present in the liver, heart, and pectoral muscle. The available data suggest that this parasite produces only meronts, and not megalomeronts. However, numerous megalomeronts at different stages of development were observed in the gizzard and the heart of one individual. Based on the morphology, location in organs, and diagnostics using the lineage-specific probes, the megalomeronts were attributed to Haemoproteus majoris (lineage hWW2). Two cases of empty capsular-like walls of megalomeronts were seen in the gizzard, indicating that the megalomeronts had already ruptured and degenerated. The extensive microscopic examination did not reveal gametocytes of H. majoris, obviously indicating an abortive development. Abortive haemosporidian infections were often speculated to occur in wildlife but have not been documented in naturally infected birds. This study recognised patterns in the exo-erythrocytic development of H. attenuatus, and is to our knowledge the first documentation of abortive Haemoproteus infection in a naturally infected bird during exo-erythrocytic development.
Abstract Forests are being converted to agriculture throughout the Afrotropics, driving declines in sensitive rainforest taxa such as understorey birds. The ongoing expansion of cocoa agriculture, a common small‐scale farming commodity, has contributed to the loss of 80% rainforest cover in some African countries. African cocoa farms may provide habitat for biodiversity, yet little is known about their suitability for vertebrate fauna, or the effect of farm management on animal communities. Here, we report the first in‐depth investigation into avian diversity and community composition in African cocoa, by assembling a dataset of 9,566 individual birds caught across 83 sites over 30 years in Southern Cameroon. We compared bird diversity in mature forest and cocoa using measures of alpha, beta and gamma diversity, and we investigated the effect of cocoa farm shade and forest cover on bird communities. Gamma diversity was higher in cocoa than forest, though alpha diversity was similar, indicating a higher dissimilarity (beta diversity) between cocoa farms. Cocoa farms differed from forest in community composition, with a distinctive decrease in relative abundance of insectivores, forest specialists and ant‐followers and an increase in frugivores. Within cocoa farms, we found that farms with high shade cover in forested landscapes resulted in higher relative abundance and richness of sensitive forest species; shady farms contained up to five times the proportion of forest specialists than sunny farms. Synthesis and applications . Sunny African cocoa farms were less able to support sensitive bird guilds compared with shaded farms in forested landscapes. Our findings support the notion that certain ecological and dietary guilds, such as ant‐followers and forest specialists are disproportionately affected by land‐use change. In light of the current push to increase cocoa production in sub‐Saharan Africa, our results provide policymakers opportunities for more wildlife‐friendly cocoa schemes that maximize avian diversity.
Aims:The feed industry needs new sources of highly digestible protein to substitute other valuable limited protein sources of animal origin such as fishmeal in animal feed.The aim of this study was to exploit the potential of the housefly larvae (maggots) in production of a low-cost, high-quality protein source to supplement feeds for poultry farmers.
While malaria remains a serious public health concern, its rapid or prompt diagnosis in remote areas is important in the fight against the disease. The study aimed to evaluate the performance of widely used Rapid Diagnostic Test (RDT) kits for routinely detection of Plasmodium asymptomatic patients. A total of 400 asymptomatic participants of both sexes aged between 1-89 years from Menoua Division (Santchou and Dschang) were tested for malaria infection using both microscopy and CareStart™ RDT. The prevalence of malaria was higher when using the standard gold tool (Microscopy) (26.0%) compared to RDT (21.8%) with a significant difference (P < 0.05). However, a strong agreement was observed between both tests (kappa = 0.883; P < 0.0001). RDT CareStart™ sensitivity and specificity were 83.65% and 100% respectively while the positive predictive value and negative predictive value were 100% and 95.57% respectively. RDT sensitivity increased with parasite density while false negative (40.4%; n = 17) were observed only when parasite density was low (<500 parasites per microliter of blood). RDT kits appear to be good tools in areas where malaria diagnosis through microscopy is not feasible. However, the low sensibility observed when parasite density is low could be a concern.