Solution 1H NMR spectroscopy has been used to determine the relative strengths (covalency) of the two axial His−Fe bonds in paramagnetic, S = 1/2, human met-cytoglobin. The sequence specific assignments of crucial portions of the proximal and distal helices, together with the magnitude of hyperfine shifts and paramagnetic relaxation, establish that His81 and His113, at the canonical positions E7 and F8 in the myoglobin fold, respectively, are ligated to the iron. The characterized complex (∼90%) in solution has protohemin oriented as in crystals, with the remaining ∼10% exhibiting the hemin orientation rotated 180° about the α-, γ-meso axis. No evidence could be obtained for any five-coordinate complex (<1%) in equilibrium with the six-coordinate complexes. Extensive sequence-specific assignments on other dipolar shifted helical fragments and loops, together with available alternate crystal coordinates for the complex, allowed the robust determination of the orientation and anisotropies of the paramagnetic susceptibility tensor. The tilt of the major axis is controlled by the His−Fe−His vector, and the rhombic axes are controlled by the mean of the imidazole orientations for the two His. The anisotropy of the paramagnetic susceptibility tensor allowed the quantitative factoring of the hyperfine shifts for the two axial His to reveal an indistinguishable pattern and magnitudes of the contact shifts or π spin densities, and hence, indistinguishable Fe-imidazole covalency for both Fe−His bonds.
Voltage-gated sodium (NaV) channels are important targets of general anesthetics, including the intravenous anesthetic propofol. Electrophysiology studies on the prokaryotic NaV channel NaChBac have demonstrated that propofol promotes channel activation and accelerates activation-coupled inactivation, but the molecular mechanisms of these effects are unclear. Here, guided by computational docking and molecular dynamics simulations, we predict several propofol-binding sites in NaChBac. We then strategically place small fluorinated probes at these putative binding sites and experimentally quantify the interaction strengths with a fluorinated propofol analogue, 4-fluoropropofol. In vitro and in vivo measurements show that 4-fluoropropofol and propofol have similar effects on NaChBac function and nearly identical anesthetizing effects on tadpole mobility. Using quantitative analysis by 19F-NMR saturation transfer difference spectroscopy, we reveal strong intermolecular cross-relaxation rate constants between 4-fluoropropofol and four different regions of NaChBac, including the activation gate and selectivity filter in the pore, the voltage sensing domain, and the S4-S5 linker. Unlike volatile anesthetics, 4-fluoropropofol does not bind to the extracellular interface of the pore domain. Collectively, our results show that propofol inhibits NaChBac at multiple sites, likely with distinct modes of action. This study provides a molecular basis for understanding the net inhibitory action of propofol on NaV channels.
Significance How general anesthetics modulate the function of voltage-gated sodium (Na V ) channels remains a mystery. Here, strategic placements of 19 F probes, guided by molecular dynamics simulations, allowed for high-resolution NMR quantitation of the volatile anesthetic isoflurane binding to the bacterial Na v channel NaChBac. The data provided experimental evidence showing that channel blockade at the base of the ion selectivity filter and the restricted pivot motion at the S4–S5 linker and the P2–S6 helix hinge underlie the action of isoflurane on NaChBac. The results contribute to a better understanding of the molecular mechanisms of general anesthesia.
To characterize the binding sites of mecamylamine enantiomers on the transmembrane domain (TMD) of human (h) (α4)3(β2)2 and (α4)2(β2)3 nicotinic acetylcholine receptors (AChRs), we used nuclear magnetic resonance (NMR), molecular docking, and radioligand binding approaches. The interactions of (S)-(+)- and (R)-(-)-mecamylamine with several residues, determined by high-resolution NMR, within the hα4β2-TMD indicate different modes of binding at several luminal (L) and nonluminal (NL) sites. In general, the residues sensitive to each mecamylamine enantiomer are similar at both receptor stoichiometries. However, some differences were observed. The molecular docking experiments were crucial for delineating the location and orientation of each enantiomer in its binding site. In the (α4)2(β2)3-TMD, (S)-(+)-mecamylamine interacts with the L1 (i.e., between positions -3' and -5') and L2 (i.e., between positions 16' and 20') sites, whereas the β2-intersubunit (i.e., cytoplasmic end of two β2-TMDs) and α4/β2-intersubunit (i.e., cytoplasmic end of α4-TM1 and β2-TM3) sites are shared by both enantiomers. In the (α4)3(β2)2-TMD, both enantiomers bind with different orientations to the L1' (closer to ring 2') and α4-intrasubunit (i.e., at the cytoplasmic ends of α4-TM1 and α4-TM2) sites, but only (R)-(-)-mecamylamine interacts with the L2' (i.e., closer to ring 20') and α4-TM3-intrasubunit sites. Our findings are important because they provide, for the first time, a structural understanding of the allosteric modulation elicited by mecamylamine enantiomers at each hα4β2 stoichiometry. This advancement could be beneficial for the development of novel therapies for the treatment of several neurological disorders.