This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.
Molecular dynamics simulations of high-temperature annealing are performed on nanostructured materials enabling direct observation of vacancy emission from planar defects (i.e., grain boundaries and free surfaces) to populate the initially vacancy-free grain interiors on a subnanosecond time scale. We demonstrate a universal time-length scale correlation that governs these re-equilibration processes, suggesting that nanostructures are particularly stable against perturbations in their point-defect concentrations, caused for example by particle irradiation or temperature fluctuations.
A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.
This chapter contains sections titled: Introduction Dislocation Plasticity for Larger Grain Sizes and the Existence of dc Grain-boundary-based Deformation Mechanisms for the Smallest Grain Sizes (d
We study conformational and dynamic properties of dilute polymer solutions drifting through a random environment of obstacles at varying intensity of the external field $B$ and of the host matrix density ${C}_{\mathrm{ob}}$ using dynamic Monte Carlo simulation of an off-lattice bead-spring model. The presence of obstacles is found to influence strongly the conformational properties of the drifting chains: with growing strength of the field $B$ and ${C}_{\mathrm{ob}}\ensuremath{\ne}0$ the chain mean size (gyration radius), ${R}_{g}^{2}$, rapidly increases while the ratio between the end-to-end distance, ${R}_{\mathrm{ee}}^{2}$, and ${R}_{g}^{2}$ drops essentially below the usual value of 6, typical in the absence of drift, suggesting a hooflike shape of the chain with both ends directed along the external field vector. We confirm the finding of G. M. Foo and R. B. Pandey [Phys. Rev. E 51, 5738 (1995)] of a critical strength of the external field ${B}_{c}$ above which the permeability of the host matrix sharply drops. A detailed study of this phenomenon suggests that ${B}_{c}$ may be related to a dramatic growth of a specific ``capture'' time, characterizing the interaction of the chains with the obstacles, so that a simple model describing the drift of chains among obstacles may be shown to reproduce our findings.
This report provides an overview and commands description of the Computational Materials mini-application, Aladyn. Aladyn is a simple molecular dynamics code written in FORTRAN 2008, which is designed to demonstrate the use of adaptive neural networks (ANNs) in atomistic simulations. The role of ANNs is to reproduce the very complex energy landscape resulting from the atomic interactions in materials with the accuracy of quantum mechanics-based energy calculations. The ANN is trained on a large set of atomic structures calculated using the density functional theory (DFT) method. The Aladyn code is being released to serve as a training testbed for students and professors in academia to explore possible optimization algorithms for parallel computing on multicore central processing unit (CPU) computers or computers utilizing many core architectures based on graphic processing units (GPUs). The effort is related to the High Performance Computing Incubator (HPCI) project at NASA Langley Research Center.
Abstract Six selected area electron diffraction (SAED) patterns and two HREM images from Pb 5 MoO 8 single crystals are presented and used to solve their structure. The unit cell parameters of these crystals confirm the known powder diffraction data.
Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship characterizing the load transfer across the plane of a growing edge crack is extracted from atomistic simulations for use within a continuum finite element model. The methodology for the atomistic derivation of a cohesive-zone law is presented. This procedure can be implemented to build cohesive-zone finite element models for simulating fracture in nanocrystalline or ultrafine grained materials.
Space exploration missions require sensors and devices capable of stable operation in harsh environments such as those that include high thermal fluctuation, atomic oxygen, and high-energy ionizing radiation. However, conventional or state-of-the-art electroactive materials like lead zirconate titanate, poly(vinylidene fluoride), and carbon nanotube (CNT)-doped polyimides have limitations on use in those extreme applications. Theoretical studies have shown that boron nitride nanotubes (BNNTs) have strength-to-weight ratios comparable to those of CNTs, excellent high-temperature stability (to 800 °C in air), large electroactive characteristics, and excellent neutron radiation shielding capability. In this study, we demonstrated the experimental electroactive characteristics of BNNTs in novel multifunctional electroactive nanocomposites. Upon application of an external electric field, the 2 wt % BNNT/polyimide composite was found to exhibit electroactive strain composed of a superposition of linear piezoelectric and nonlinear electrostrictive components. When the BNNTs were aligned by stretching the 2 wt % BNNT/polyimide composite, electroactive characteristics increased by about 460% compared to the nonstretched sample. An all-nanotube actuator consisting of a BNNT buckypaper layer between two single-walled carbon nanotube buckypaper electrode layers was found to have much larger electroactive properties. The additional neutron radiation shielding properties and ultraviolet/visible/near-infrared optical properties of the BNNT composites make them excellent candidates for use in the extreme environments of space missions.