Eighty strains of enterohemorrhagic Escherichia coli O157:H7/H- were analyzed by three single-nucleotide polymorphism (SNP) panels using whole-genome sequencing data. The partial concordance of SNP types among the different SNP panels was observed on minimum spanning trees reconstructed with SNP data. As for lineage I/II strains, some of the clade 7 strains belonged to one unique SNP type as determined by three panels, suggesting that clade 7 should be divided into at least two genotypes, namely, the unique type and the rest. In addition, clade 8 contained two unique genotypes, which was consistent with the previous prediction. Similarly, for lineage II, clade 12 should be divided into three genotype strains. In contrast, many strains of several clades belonging to lineage I were clustered into the same node on each minimum spanning tree upon testing with the three SNP panels. Previous studies reported that lineage I diverged more recently than lineages I/II and II. Such low diversity in lineage I in this study may have arisen because this lineage has not accumulated SNPs because of its relatively recent divergence. Based on the concordance observed in this study, some of the previously published O157 genotype distribution data were successfully interpreted to clarify the clade distribution, which was well supported by previous literature.
This study examined the potential pathogenicity of Shiga toxin-producing Escherichia coli (STEC) in feces of sika deer by PCR binary typing (P-BIT), using 24 selected STEC genes. A total of 31 STEC strains derived from sika deer in 6 prefectures of Japan were O-serotyped and found to be O93 (n=12), O146 (n=5), O176 (n=3), O130 (n=3), O5 (n=2), O7 (n=1), O96 (n=1), O116 (n=1), O141 (n=1), O157 (n=1) and O-untypable (n=1). Of the 31 STEC strains, 13 carried both stx1 and stx2, 5 carried only stx1, and 13 carried one or two variants of stx2. However, no Stx2 production was observed in 3 strains that carried only stx2: the other 28 strains produced the appropriate Stx. P-BIT analysis showed that the 5 O5 strains from two wild deer formed a cluster with human STEC strains, suggesting that the profiles of the presence of the 24 P-BIT genes in the deer strains were significantly similar to those in human strains. All of the other non-O157 STEC strains in this study were classified with strains from food, domestic animals and humans in another cluster. Good sanitary conditions should be used for deer meat processing to avoid STEC contamination, because STEC is prevalent in deer and deer may be a potential source of STEC causing human infections.
In Japan’s Kanto region, the number of Salmonella enterica serovar Chester infections increased temporarily between 2014 and 2016. Concurrently with this temporal increase in the Kanto region, S . Chester isolates belonging to one clonal group were causing repetitive outbreaks in Europe. A recent study reported that the European outbreaks were associated with travelers who had been exposed to contaminated food in Morocco, possibly seafood. Because Japan imports a large amount of seafood from Morocco, we aimed to establish whether the temporal increase in S . Chester infections in the Kanto region was associated with imported Moroccan seafood. Short sequence reads from the whole-genome sequencing of 47 S . Chester isolates from people in the Kanto region (2014–2016), and the additional genome sequences from 58 isolates from the European outbreaks, were analyzed. The reads were compared with the complete genome sequence from a S . Chester reference strain, and 347 single nucleotide polymorphisms (SNPs) were identified. These SNPs were used in this study. Cluster and Bayesian cluster analyses showed that the Japanese and European isolates fell into two different clusters. Therefore, Φ PT and IAS values were calculated to evaluate genetic differences between these clusters. The results revealed that the Japanese and European isolates were genetically distinct populations. Our root-to-tip analysis showed that the Japanese isolates originating from one clone had accumulated mutations, suggesting that an emergence of this organism occurred. A minimum spanning tree analysis demonstrated no correlation between genetic and geographical distances in the Japanese isolates, suggesting that the emergence of the serovar in the Kanto region did not involve person-to-person contact; rather, it occurred through food consumption. The d N / d S ratio indicated that the Japanese strain has evolved under positive selection pressure. Generally, a population of bacterial clones in a reservoir faces negative selection pressure. Therefore, the Japanese strain must have existed outside of any reservoir during its emergence. In conclusion, S . Chester isolates originating from one clone probably emerged in the Kanto region via the consumption of contaminated foods other than imported Moroccan seafood. The emerging strain may have not established a reservoir for survival in the food supply chain resulting in its disappearance after 2017.
Flagella are the well-known structural appendages used by bacteria for motility. Although generally reported to be non-motile, the enteropathogenic bacterial species Escherichia albertii produces flagella intermittently. We found that E. albertii expressed flagella under specific environmental conditions. After several generations (involving 4 to 12-h incubations), six of the twelve strains we investigated displayed swimming motility in various aquatic environments, including pond water containing nutrients from pigeon droppings (10% suspension) as well as in 20 × -diluted tryptic soy broth. The most significant motility determinant was a temperature between 15 and 30 °C. At 20 °C in the 10% pigeon-dropping suspension, microscopic observations revealed that some cells (1%-95% of six strains) showed swimming motility. Electron microscopy showed that the E. albertii cells expressed flagella. Lower concentrations of some substrates (including nutrients) may be of secondary importance for E. albertii flagella expression. Interestingly, the non-motile strains (n = 6/12) contained pseudogenes corresponding to essential flagella structural proteins. After being released from its host into surface water, E. albertii may express flagella to move toward nutrient sources or new hosts.
Among the nine clades of Shiga toxin (Stx)-producing Escherichia coli O157:H7, clade 8 is thought to be highly pathogenic, as it causes severe disease more often than other clades. Two subclades have been proposed, but there are conflicting reports on intersubclade differences in Stx2 levels, although Stx2 production is a risk factor for severe disease development. The global population structure of clade 8 has also yet to be fully elucidated. Here, we present genome analyses of a global clade 8 strain set ( n =510), including 147 Japanese strains sequenced in this study. The complete genome sequences of 18 of the 147 strains were determined to perform detailed clade-wide genome analyses together with 17 publicly available closed genomes. Intraclade variations in Stx2 production level and disease severity were also re-evaluated within the phylogenetic context. Based on phylogenomic analysis, clade 8 was divided into four lineages corresponding to the previously proposed SNP genotypes (SGs): SG8_30, SG8_31A, SG8_31B and SG8_32. SG8_30 and the common ancestor of the other SGs were first separated, with SG8_31A and SG8_31B emerging from the latter and SG8_32 emerging from SG8_31B. Comparison of 35 closed genomes revealed the overall structure of chromosomes and pO157 virulence plasmids and the prophage contents to be well conserved. However, Stx2a phages exhibit notable genomic diversity, even though all are integrated into the argW locus, indicating that subtype changes in Stx2a phage occurred from the γ subtype to its variant (γ_v1) in SG8_31A and from γ to δ in SG8_31B and SG8_32 via replacement of parts or almost entire phage genomes, respectively. We further show that SG8_30 strains (all carrying γ Stx2a phages) produce significantly higher levels of Stx2 and cause severe disease more frequently than SG8_32 strains (all carrying δ Stx2a phages). Clear conclusions on SG8_31A and SG8_31B cannot be made due to the small number of strains available, but as SG8_31A (carrying γ_v1 Stx2a phages) contains strains that produce much more Stx2 than SG8_30 strains, attention should also be paid to this SG.
We investigated the effectiveness of a loop-mediated isothermal amplification (LAMP) assay to screen meat samples to detect enterohemorrhagic Escherichia coli serovar O157 and O26. Ninety beef rumen samples were cultured in mEC broth at 37°C and noboviocin-containing mEC broth (N-mEC) at 42°C, and then assayed by LAMP reactions. Twenty-eight mEC culture samples were positive by LAMP assay but no samples were positive for EHEC O157 or O26 by the immuno-magnetic separation (IMS) method. Among N-mEC culture samples, 17 samples were positive by LAMP assay and EHEC O157 was isolated from one sample by IMS method, but no sample was positive for EHEC O26 by IMS method. The rate of concordance for negative results between LAMP assay and IMS method (true negative fraction) was 0.8202 for EHEC O157 and 0.8111 for EHEC O26 by N-mEC culturing. By mEC culturing, true negative fraction was 0.6889 for both EHEC O157 and O26. The effectiveness of LAMP assay for screening was also confirmed using retailed meat samples. Four out of 100 retailed meat samples had positive LAMP reactions, and no EHEC O157 or O26 was isolated from the positive samples. For retailed meat samples, true negative fraction was 0.98 for EHEC O157 or O26. These results suggested that LAMP assay was effective for screening meat samples for EHEC O157 and O26.