Thousand and one amino-acid kinase 1 (TAOK1) is a MAP3K protein kinase, regulating different mitogen-activated protein kinase pathways, thereby modulating a multitude of processes in the cell. Given the recent finding of TAOK1 involvement in neurodevelopmental disorders (NDDs), we investigated the role of TAOK1 in neuronal function and collected a cohort of 23 individuals with mostly de novo variants in TAOK1 to further define the associated NDD. Here, we provide evidence for an important role for TAOK1 in neuronal function, showing that altered TAOK1 expression levels in the embryonic mouse brain affect neural migration in vivo, as well as neuronal maturation in vitro. The molecular spectrum of the identified TAOK1 variants comprises largely truncating and nonsense variants, but also missense variants, for which we provide evidence that they can have a loss of function or dominant-negative effect on TAOK1, expanding the potential underlying causative mechanisms resulting in NDD. Taken together, our data indicate that TAOK1 activity needs to be properly controlled for normal neuronal function and that TAOK1 dysregulation leads to a neurodevelopmental disorder mainly comprising similar facial features, developmental delay/intellectual disability and/or variable learning or behavioral problems, muscular hypotonia, infant feeding difficulties, and growth problems.
Abstract Objective Mutations in the genes encoding neuronal ion channels are a common cause of Mendelian neurological diseases. We sought to identify novel de novo sequence variants in cases with early infantile epileptic phenotypes and neurodevelopmental anomalies. Methods Following clinical diagnosis, we performed whole exome sequencing of the index cases and their parents. Identified channel variants were expressed in Xenopus oocytes and their functional properties assessed using two‐electrode voltage clamp. Results We identified novel de novo variants in KCNA6 in four unrelated individuals variably affected with neurodevelopmental disorders and seizures with onset in the first year of life. Three of the four identified mutations affect the pore‐lining S6 α‐helix of K V 1.6. A prominent finding of functional characterization in Xenopus oocytes was that the channel variants showed only minor effects on channel activation but slowed channel closure and shifted the voltage dependence of deactivation in a hyperpolarizing direction. Channels with a mutation affecting the S6 helix display dominant effects on channel deactivation when co‐expressed with wild‐type K V 1.6 or K V 1.1 subunits. Significance This is the first report of de novo nonsynonymous variants in KCNA6 associated with neurological or any clinical features. Channel variants showed a consistent effect on channel deactivation, slowing the rate of channel closure following normal activation. This specific gain‐of‐function feature is likely to underlie the neurological phenotype in our patients. Our data highlight KCNA6 as a novel channelopathy gene associated with early infantile epileptic phenotypes and neurodevelopmental anomalies.
Abstract SPTBN1 encodes βII-spectrin, the ubiquitously expressed member of the β-spectrin family that forms micrometer-scale networks associated with plasma membranes. βII-spectrin is abundantly expressed in the brain, where it is essential for neuronal development and connectivity. Mice deficient in neuronal βII-spectrin expression have defects in cortical organization, global developmental delay, dysmorphisms, and behavioral deficiencies of corresponding severity. These phenotypes, while less severe, are observed in haploinsufficient animals, suggesting that individuals carrying heterozygous variants in this gene may also present with measurable compromise of neural development and function. Here we report the identification of heterozygous SPTBN1 variants in 29 individuals who present with global developmental, language and motor delays, mild to severe intellectual disability, autistic features, seizures, behavioral and movement abnormalities, hypotonia, and variable dysmorphic facial features. We show that these SPTBN1 variants lead to loss-of-function, gain-of-function, and dominant negative effects that affect protein stability, disrupt binding to key protein partners, and disturb cytoskeleton organization and dynamics. Our studies define the genetic basis of this new neurodevelopmental syndrome, expand the set of spectrinopathies affecting the brain and neural development, and underscore the critical role of βII-spectrin in the central nervous system.