Activation of toll-like receptors (TLRs) has been shown to play an important role in leishmaniosis by enhancing the parasite specific immune responses to control infection. However, the role of TLR agonists has not been studied in detail in dogs. The aim of this study was to determine the effect of TLR3, TLR4, and TLR7 agonists (TLR3a, TLR4a, and TLR7a) alone or in combination with Leishmania infantum antigen (LSA) on TNF- α and IL-6 production in blood from dogs living in endemic areas of canine leishmaniosis (CanL). Twenty-four healthy dogs from Catalonia (n=14) and Ibizan hound dogs from the island of Mallorca (n=10) were enrolled. Whole blood with TLR3a, TLR4a, and TLR7a alone or combined with LSA were cultured separately, and IFN- γ , TNF- α , and IL-6 were measured by ELISA. A significant increase of TNF- α was found for all conditions studied compared to medium alone. Stimulation with TLR4a (p=0.0001) and TLR7a (p=0.005) presented a significantly marked increase in TNF- α and IL-6 production compared to TLR3a. Importantly, significantly higher TNF- α production was found in LSA+TLR4a (p=0.0001) stimulated blood and LSA+TLR7a (p=0.005) compared to LSA alone. All dogs showed higher TNF- α production after LSA+TLR7a compared to TLR7a (p=0.047) and LSA+TLR3a compared to TLR3a (p=0.052) . These data indicate a marked inflammatory cytokine effect of TLR4a and TLR7a on blood from healthy dogs living in endemic areas of CanL. Additionally, LSA+TLR7a promoted a synergistic proinflammatory effect with TNF- α in all dogs. Those findings suggest an active role of TLRs in proinflammatory responses, which might be strongly involved in the process of disease resolution.
Vector-borne pathogens are the subject of several investigations due to the zoonotic concern of some of them. However, limited data are available about the simultaneous presence of these pathogens in cats and their ectoparasites. The aim of the present study was to define the species of ectoparasites found on cats as well as to investigate vector-borne pathogens in cats and their ectoparasites in southern Italy. Blood from 42 cats and fleas or flea pools (n = 28) and ticks (n = 73) collected from them were investigated by quantitative PCR for the detection of vector-borne pathogens. Feline serum samples were tested by IFAT to detect IgG antibodies against Leishmania infantum, Bartonella henselae, Rickettsia conorii, Rickettsia felis, Rickettsia typhi, Babesia microti, Ehrlichia canis and Anaplasma phagocytophilum antigens. Only one flea species (Ctenocephalides felis) and four tick species belonging to the genera Rhipicephalus and Ixodes were identified on cats from southern Italy. Molecular evidence of Bartonella spp., Rickettsia spp., hemoplasmas, Babesia vogeli and L. infantum was found in ectoparasites (fleas and/or ticks) while DNA from Hepatozoon felis and Ehrlichia/Anaplasma spp. was not detected. Likewise, DNAs from Bartonella, hemoplasma and Leishmania were the only pathogens amplified from feline blood samples. Cats had also antibodies against all the investigated pathogens with the exception of Rickettsia typhi. Agreement between serological and molecular results in individual cats and their ectoparasites was not found. The only exception was for Bartonella with a fair to moderate agreement between individual cats and their ectoparasites. Bartonella clarridgeiae was the species most frequently found in cats and their fleas followed by B. henselae. In conclusion, cats harboring ticks and fleas are frequently exposed to vector-borne pathogens. Furthermore, ticks and fleas harbored by cats frequently carry pathogens of zoonotic concern therefore appropriate feline ectoparasiticide preventative treatments should be used in cats.
Beagles are commonly used in vaccine trials as part of the regulatory approval process. Genetic restriction within this breed and the impact this might have on vaccine responses are rarely considered. This study was designed to characterise diversity of dog leucocyte antigen (DLA) class II genes in a breeding colony of laboratory Beagles, whose offspring are used in vaccine studies. DLA haplotypes were determined by PCR and sequence-based typing from genomic DNA extracted from blood. Breeding colony Beagles had significantly different DLA haplotype frequencies in comparison with pet Beagles and both groups showed limited DLA diversity. Restricted DLA class II genetic variability within Beagles might result in selective antigen presentation and vaccine responses that are not necessarily representative of those seen in other dog breeds.
A 15‐year‐old domestic shorthair feline immunodeficiency virus‐positive cat was presented with a five day history of productive cough and acute respiratory distress. Physical examination revealed inspiratory dyspnoea and diffuse gingivostomatitis. Radiographs showed an intratracheal mass located at the level of the sixth and the seventh cervical vertebrae. Bronchoscopy revealed a unique intratracheal mass occluding about 85 per cent of the tracheal lumen. The tracheal mass was removed bronchoscopically. A diagnosis of pyogranulomatous inflammation referable to a mycobacterial infection was made based on cytological and histopathological findings. 16S rRNA polymerase chain reaction testing and sequence analysis identified a novel mycobacterial species, likely a slow grower, with 95 per cent identity with Mycobacterium xenopi . To our knowledge, this is the first description of a tracheal mycobacterial granuloma in a cat, and the first time, a mycobacterium with this sequence has been identified.
Papular dermatitis is a cutaneous manifestation of canine Leishmania infantum infection associated with mild disease. Although it is a typical presentation, nowadays, there is still no established treatment. This study evaluated the safety and clinical efficacy of local meglumine antimoniate, locally administered polyhexamethylene biguanide (PHMB) alone or PHMB in combination with a Toll-like receptor 4 agonist (TLR4a) for the treatment of papular dermatitis due to L. infantum and assessed parasitological and immunological markers in this disease. Twenty-eight dogs with papular dermatitis were divided randomly into four different groups; three of them were considered treatment groups: PHMB (n = 5), PHMB + TLR4a (n = 4), and meglumine antimoniate (n = 10)), and the remaining were considered the placebo group (n = 9), which was further subdivided into two sub-groups: diluent (n = 5) and TLR4a (n = 4). Dogs were treated locally every 12 h for four weeks. Compared to placebo, local administration of PHMB (alone or with TLR4a) showed a higher tendency towards resolution of papular dermatitis due to L. infantum infection at day 15 (χ2 = 5.78; df = 2, p = 0.06) and day 30 (χ2 = 4.; df = 2, p = 0.12), while local meglumine antimoniate administration demonstrated the fastest clinical resolution after 15 (χ2 = 12.58; df = 2, p = 0.002) and 30 days post-treatment (χ2 = 9.47; df = 2, p = 0.009). Meglumine antimoniate showed a higher tendency towards resolution at day 30 when compared with PHMB (alone or with TLR4a) (χ2 = 4.74; df = 2, p = 0.09). In conclusion, the local administration of meglumine antimoniate appears to be safe and clinically efficient for the treatment of canine papular dermatitis due to L. infantum infection.