Recently, Ag–Ag2S hybrid nanostructures have attracted a great deal of attention due to their enhanced chemical and thermal stability, in addition to their morphology- and composition-dependent tunable local surface plasmon resonances. Although Ag–Ag2S nanostructures can be synthesized via sulfidation of as-prepared anisotropic Ag nanoparticles, this process is poorly understood, often leading to materials with anomalous compositions, sizes, and shapes and, consequently, optical properties. In this work, we use theory and experiment to investigate the structural and plasmonic evolution of Ag–Ag2S nanoprisms during the sulfidation of Ag precursors. The previously observed red-shifted extinction of the Ag–Ag2S hybrid nanoprism as sulfidation occurs contradicts theoretical predictions, indicating that the reaction does not just occur at the prism tips as previously speculated. Our experiments show that sulfidation can induce either blue or red shifts in the extinction of the dipole plasmon mode, depending on reaction conditions. By elucidating the correlation with the final structure and morphology of the synthesized Ag–Ag2S nanoprisms, we find that, depending on the reaction conditions, sulfidation occurs on the prism tips and/or the (111) surfaces, leading to a core(Ag)–anisotropic shell(Ag2S) prism nanostructure. Additionally, we demonstrate that the direction of the shift in the dipole plasmon is a function of the relative amounts of Ag2S at the prism tips and Ag2S shell thickness around the prism.
Previous studies on the toxicity of engineered nanomaterials (ENMs) have been primarily based on testing individual ENMs, so little is known about the interactions and combined toxicity of multiple ENMs. In this study the toxicity of chemically stable nano-TiO2 and soluble nano-ZnO was investigated individually and in combination, by monitoring bacterial cell membrane integrity and ATP levels in a natural aqueous medium (Lake Michigan water). Both nano-TiO2 and nano-ZnO damage bacterial cell membranes under simulated solar irradiation (SSI), but their phototoxicity is not additive. Nano-ZnO at 1 mg/L, for example, surprisingly eliminates the damaging effect of nano-TiO2 at 10 mg/L. This phenomenon does not correlate with reactive oxygen species production, but is explained by a reduced extent of bacteria/nano-TiO2 contact in the presence of both nano-ZnO and dissolved zinc. The presence of nano-ZnO also exerts a significant decrease in bacterial ATP levels both under SSI and in the dark, a stress effect not captured by measuring bacterial cell membrane integrity. This inhibitory effect of nano-ZnO, however, is reduced somewhat by nano-TiO2 due to the adsorption of Zn2+. Therefore, our results reveal that nanoparticle interactions and surface complexation reactions alter the original toxicity of individual nanoparticles and that comprehensive assessments of potential ENM toxicity in the environment require careful integration of complex physicochemical interactions between ENMs and various biological responses.
Fractal Pt-based materials with hierarchical structures and high self-similarity have attracted more and more attention due to their bioinspiring maximum optimization of energy utilization and mass transfer. However, their high-efficiency design of the mass- and electron-transfer still remains to be a great challenge. Herein, fractal PtPdCu hollow sponges (denoted as PtPdCu-HS) facilitating both directed mass- and electron-transfer are presented. Such directed transfer effects greatly promote electrocatalytic activity, regarded as 3.9 times the mass activity, 7.3 times the specific activity, higher poison tolerance, and higher stability than commercial Pt/C for the methanol oxidation reaction (MOR). A new "directed mass- and electron-transfer" concept, characteristics, and mechanism are proposed at the micro/nanoscale to clarify the structural design and functional enhancement of fractal electrocatalyst. This work displays new possibilities for designing novel nanomaterials with high activity and superior stability toward electrocatalysis or other practical applications.
Orthorhombic niobium pentoxide (T-Nb2O5) is regarded as a potential anode material for lithium-ion batteries (LIBs) due to ultrafast charge/discharge and high safety. However, the poor electronic conductivity and low mass loading of nanostructured T-Nb2O5 limit its practical application in LIBs. Herein, we design and construct dense microspheres consisting of nanostructured T-Nb2O5 embedded in amorphous N-doped carbon (Nb2O5@NC) via a facile method to achieve fast ionic and electronic transport as well as a high mass loading. The dense micro-sized particles with an interconnected carbon network avoid the low mass loading and volumetric energy density of conventional nanostructures. Interconnected pores in the range of a few nanometers are also formed in the Nb2O5@NC microspheres. Notably, at a high mass loading of 12.8 mg cm–2, Nb2O5@NC can achieve a high specific capacity of 171.5 mAh g–1 and an areal capacity of 2.05 mAh cm–2, showing its high lithium storage capacity. The intercalation reaction mechanism with a small volume change during cycling at both crystal lattice and microsphere levels is confirmed by in situ X-ray diffraction and in situ high-resolution transmission electron microscopy. The elegant structure and the electrochemical reaction mechanism disclosed in the work is important for designing ultrafast-(dis)charge electrode materials.
Modulation of the microstructure and configurational entropy tuning are the core stratagem for improving thermoelectric performance. However, the correlation of evolution among the preparation methods, chemical composition, structural defects, configurational entropy, and thermoelectric properties is still unclear. Herein, two series of AgSbTe2-based compounds were synthesized by an equilibrium melting-slow-cooling method and a nonequilibrium melting-quenching-spark plasma sintering (SPS) method, respectively. The equilibrium method results in coarse grains with a size of >300 μm in the samples and a lower defect concentration, leading to higher carrier mobility of 10.66 cm2 V-1 s-1 for (Ag2Te)0.41(Sb2Te3)0.59 compared to the sample synthesized by nonequilibrium preparation of 1.83 cm2 V-1 s-1. Moreover, tuning the chemical composition of nonstoichiometric AgSbTe2 effectively improves the configurational entropy and creates a large number of cation vacancies, which evolve into dense dislocations in the samples. Owing to all of these in conjunction with the strong inharmonic vibration of lattice, an ultralow thermal conductivity of 0.51 W m-1 K-1 at room temperature is achieved for the (Ag2Te)0.42(Sb2Te3)0.58 sample synthesized by the equilibrium preparation method. Due to the enhanced carrier mobility, optimized carrier concentration, and low thermal conductivity, the (Ag2Te)0.42(Sb2Te3)0.58 sample synthesized by the equilibrium preparation method possesses the highest ZT of 1.04 at 500 K, more than 60% higher than 0.64 at 500 K of the same composition synthesized by nonequilibrium preparation.
We investigated the chemistry of Hg(II) during exposure of exponentially growing bacteria (Escherichia coli, Bacillus subtilis, and Geobacter sulfurreducens) to 50 nM, 500 nM, and 5 μM total Hg(II) with and without added cysteine. With X-ray absorption spectroscopy, we provide direct evidence of the formation of cell-associated HgS for all tested bacteria. The addition of cysteine (100–1000 μM) promotes HgS formation (>70% of total cell-associated Hg(II)) as a result of the biodegradation of added cysteine to sulfide. Cell-associated HgS species are also detected when cysteine is not added as a sulfide source. Two phases of HgS, cinnabar (α-HgS) and metacinnabar (β-HgS), form depending on the total concentration of Hg(II) and sulfide in the exposure medium. However, α-HgS exclusively forms in assays that contain an excess of cysteine. Scanning transmission electron microscopy images reveal that nanoparticulate HgS(s) is primarily located at the cell surface/extracellular matrix of Gram-negative E. coli and G. sulfurreducens and in the cytoplasm/cell membrane of Gram-positive B. subtilis. Intracellular Hg(II) was detected even when the predominant cell-associated species was HgS. This study shows that HgS species can form from exogenous thiol-containing ligands and endogenous sulfide in Hg(II) biouptake assays under nondissimilatory sulfate reducing conditions, providing new considerations for the interpretation of Hg(II) biouptake results.
High-energy-density nickel (Ni)–rich cathode materials are employed in commercial lithium (Li)–ion batteries for electric vehicles, but they suffer from severe structural degradation upon cycling as the mechanical fractures generated within the internal grains aggravate with an increment of the Ni content. Planar gliding and microcracking are seeds for fatal mechanical fracture in Ni-rich cathodes. However, the origin of planar gliding and microcracking remains largely unclear. Herein, we show that a ‘layer-by-layer delithiation’ mode is activated at high voltages during the charge process when the ‘lattice-collapse’ (the characteristic abrupt lattice contraction immediately after expansion at high voltage) occurs. The ‘layer-by-layer delithiation’ is evidenced by direct observation of the consecutive ‘lattice-collapse’ using in-situ scanning transmission electron microscopy (STEM). The collapsing of the lattice initiates in the expanded planes and consecutively extends to the whole crystal. The ‘layer-by-layer delithiation’ induces localized strain at lattice collapsing interface where the planar gliding and intragranular microcracks are generated to release this strain, and irreversible cracks will be induced when the defects occur at the same location repeatedly. Our study reveals that the ‘layer-by-layer delithiation’ at high voltages is the fundamental origin of the mechanical instability in Ni-rich cathodes and provides pathways to design a next generation of high-energy Ni-rich cathodes with high cyclability.
Using a geometric shadowing effect, a thin catalyst layer can be coated asymmetrically on the side of a nanorod backbone. Combining with substrate rotation, a dynamic shadowing growth technique has been developed to fabricate catalytic nanomotors such as rotary Si/Pt nanorods, rotary L-shaped Si/Pt and Si/Ag nanorods, and rolling Si/Ag nanosprings, and their autonomous motions have been demonstrated in a diluted H2O2 solution. This fabrication method reveals an optimistic step toward designing integrated nanomachines.