The evolution of intrauterine development, vivipary, and placentation in eutherian mammals has introduced new possibilities and constraints in the regulation of neural plasticity and development which promote neural function that is adaptive to the environment that a developing brain is likely to encounter in the future. A range of evolutionary adaptations associated with placentation transfers disproportionate control of this process to the matriline, a period unique in mammalian development in that there are three matrilineal genomes interacting in the same organism at the same time (maternal, foetal, and postmeiotic oocytes). The interactions between the maternal and developing foetal hypothalamus and placenta can provide a template by which a mother can transmit potentially adaptive information concerning potential future environmental conditions to the developing brain. In conjunction with genomic imprinting, it also provides a template to integrate epigenetic information from both maternal and paternal lineages. Placentation also hands ultimate control of genomic imprinting and intergenerational epigenetic information transfer to the matriline as epigenetic markers undergo erasure and reprogramming in the developing oocyte. These developments, in conjunction with an expanded neocortex, provide a unique evolutionary template by which matrilineal transfer of maternal care, resources, and culture can be used to promote brain development and infant survival.
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.
Although neural c-Jun is essential for successful peripheral nerve regeneration, the cellular basis of this effect and the impact of c-Jun activation are incompletely understood. In the current study, we explored the effects of neuron-selective c-Jun deletion, substitution of serine 63 and 73 phosphoacceptor sites with non-phosphorylatable alanine, and deletion of Jun N-terminal kinases 1, 2 and 3 in mouse facial nerve regeneration. Removal of the floxed c-jun gene in facial motoneurons using cre recombinase under control of a neuron-specific synapsin promoter (junΔS) abolished basal and injury-induced neuronal c-Jun immunoreactivity, as well as most of the molecular responses following facial axotomy. Absence of neuronal Jun reduced the speed of axonal regeneration following crush, and prevented most cut axons from reconnecting to their target, significantly reducing functional recovery. Despite blocking cell death, this was associated with a large number of shrunken neurons. Finally, junΔS mutants also had diminished astrocyte and microglial activation and T-cell influx, suggesting that these non-neuronal responses depend on the release of Jun-dependent signals from neighboring injured motoneurons. The effects of substituting serine 63 and 73 phosphoacceptor sites (junAA), or of global deletion of individual kinases responsible for N-terminal c-Jun phosphorylation were mild. junAA mutants showed decrease in neuronal cell size, a moderate reduction in post-axotomy CD44 levels and slightly increased astrogliosis. Deletion of Jun N-terminal kinase (JNK)1 or JNK3 showed delayed functional recovery; deletion of JNK3 also interfered with T-cell influx, and reduced CD44 levels. Deletion of JNK2 had no effect. Thus, neuronal c-Jun is needed in regeneration, but JNK phosphorylation of the N-terminus mostly appears to not be required for its function.
ABSTRACT Argininosuccinate lyase (ASL) belongs to the liver-based urea cycle detoxifying ammonia, and the citrulline-nitric oxide cycle synthesising nitric oxide (NO). ASL-deficient patients present argininosuccinic aciduria characterised by hyperammonaemia and a multi-organ disease with neurocognitive impairment. Current therapeutic guidelines aim to control ammonaemia without considering the systemic NO imbalance. Here, we observed a neuronal disease with oxidative/nitrosative stress in ASL-deficient mouse brains. A single systemic injection of gene therapy mediated by an adeno-associated viral vector serotype 8 (AAV8) in adult or neonatal mice demonstrated the long-term correction of the urea cycle and the citrulline-NO cycle in the brain, respectively. The neuronal disease persisted if ammonaemia only was normalised but was dramatically reduced after correction of both ammonaemia and neuronal ASL activity. This was correlated with behavioural improvement and a decrease of the cortical cell death rate. Thus, the cerebral disease in argininosuccinic aciduria involves neuronal oxidative/nitrosative stress not mediated by hyperammonaemia, which is reversed by AAV gene transfer targeting the brain and the liver, acting on two different metabolic pathways via a single vector delivered systemically. This approach provides new hope for hepatocerebral metabolic diseases.
Nattokinase has been one of the most widely discussed and researched extracellular enzymes since it was first introduced in 2005. Nattokinase belongs to the subtilisin family and is a proteolytic enzyme (serine protease) with a powerful fibrinolytic effect. Nattokinase is purified and extracted from fermented soybean seeds under the effect of the Bacillus subtilis (Natto) bacteria. Its main natural source is the fermented vegetable cheese called natto, which is a traditional Japanese food consumed in Japan for more than 2000 years (1). All over the world, natto is regarded as a fibrinolytic miracle food. The enzyme discovery became a fact thanks to the Japanese scientist Hiroyuki Sumi, a researcher at the Medical University in Chicago, who in 1980 after testing more than 173 natural foods as possible thrombolytic agents(2), discovered that natto possesses the ability to break down artificial fibrin in vitro. Later in 1987, Sumi and his team introduced the new fibrinolytic enzyme, extracted from natto, and named it nattokinase (NK), known also as subtilisin NAT. The major interest in the enzyme is namely because of its direct fibrinolytic activity, provided that it remains stable in the gastrointestinal tract after oral administration. This determines it as a highly valuable, safe and easy-to-use nutraceutical with a wide area of medical applications for the treatment of thrombotic, neurological and dyslipidemia conditions, arterial hypertension, diabetes mellitus, atherosclerosis, hemorrhoids, endometriosis, uterine fibroids, muscle spasms, infertility in reproductive medicine and obstetrics.
Pentraxins are fluid phase pattern recognition molecules that form an important part of the innate immune defence and are conserved between fish and human. In Atlantic cod (Gadus morhua L.), two pentraxin-like proteins have been described, CRP-I and CRP-II. Here we show for the first time that these two CRP forms are post-translationally deiminated (an irreversible conversion of arginine to citrulline) and differ with respect to tissue specific localisation in cod ontogeny from 3 to 84 days post hatching. While both forms are expressed in liver, albeit at temporally differing levels, CRP-I shows a strong association with nervous tissue while CRP-II is strongly associated to mucosal tissues of gut and skin. This indicates differing roles for the two pentraxin types in immune responses and tissue remodelling, also elucidating novel roles for CRP-I in the nervous system. The presence of deimination positive bands for cod CRPs varied somewhat between mucus and serum, possibly facilitating CRP protein moonlighting, allowing the same protein to exhibit a range of biological functions and thus meeting different functional requirements in different tissues. The presented findings may further current understanding of the diverse roles of pentraxins in teleost immune defences and tissue remodelling, as well as in various human pathologies, including autoimmune diseases, amyloidosis and cancer.