In a 24-month, multicenter, open-label, randomized trial, 715 de novo kidney transplant recipients were randomized at 10-14 weeks to convert to everolimus (n = 359) or remain on standard calcineurin inhibitor (CNI) therapy (n = 356; 231 tacrolimus; 125 cyclosporine), all with mycophenolic acid and steroids. The primary endpoint, change in estimated glomerular filtration rate (eGFR) from randomization to month 12, was similar for everolimus versus CNI: mean (standard error) 0.3(1.5) mL/min/1.732 versus -1.5(1.5) mL/min/1.732 (p = 0.116). Biopsy-proven acute rejection (BPAR) at month 12 was more frequent under everolimus versus CNI overall (9.7% vs. 4.8%, p = 0.014) and versus tacrolimus-treated patients (2.6%, p < 0.001) but similar to cyclosporine-treated patients (8.8%, p = 0.755). Reporting on de novo donor-specific antibodies (DSA) was limited but suggested more frequent anti-HLA Class I DSA under everolimus. Change in left ventricular mass index was similar. Discontinuation due to adverse events was more frequent with everolimus (23.6%) versus CNI (8.4%). In conclusion, conversion to everolimus at 10-14 weeks posttransplant was associated with renal function similar to that with standard therapy overall. Rates of BPAR were low in all groups, but lower with tacrolimus than everolimus.
One of the major goals of therapeutic immunosuppression is to be able to use short-term therapy to achieve long-term tolerance. Short courses of CD4 antibodies are able to create peripheral tolerance in a mature immune system. The resulting tolerant state shows evidence of being dominant in that one can observe the features of linked suppression, transferable suppression and infectious tolerance in a variety of model systems. Only in the situation of administration of high doses of marrow could one find evidence of central and peripheral tolerance which had all the features of being deletional rather than regulatory. These findings suggest that attaining dominant tolerance and linked suppression may be the least invasive of all tolerance-inducing strategies for clinical application.
Background: Chronic kidney disease (CKD) is associated with a decreased intestinal barrier function, causing bacterial translocation over the intestinal wall and triggering a systemic inflammatory response. Butyrate, a short-chain fatty acid produced by certain bacterial strains, is considered instrumental to keep the intestinal barrier intact. There are indications that a decreased amount of these specific bacterial species is part of the cause of the decreased intestinal barrier function in CKD. The aim of this study is (i) to determine if Dutch patients with end-stage renal disease (ESRD) have a decreased amount of butyrate-producing species and butyrate-producing capacity and (ii) whether this correlates with systemic inflammation. Methods: We used qPCR to evaluate the most abundant butyrate-producing species F. prauznitzii, E. rectale and Roseburia spp. and the BCoAT gene, which reflects the butyrogenic capacity of the intestinal microbiota. Fecal samples were collected from healthy kidney donors (n=15), preemptive renal transplant recipients (n=4) and dialysis patients (n=31). Markers of inflammation (CRP and IL-6) and intestinal permeability (D-lactate) were measured in plasma. Results: Patients with ESRD did not have a significantly decreased amount F. prauznitzii, E. rectale and Roseburia spp. or the BCoAT gene. Neither was there a significant correlation with CRP, IL-6 or D-lactate. On the individual level, there were some patients with decreased BCoAT levels and increased levels of CRP, IL-6 and D-lactate. Conclusions: Patients with ESRD do not have a decreased amount of the most abundant butyrate-producing species nor a decreased butyrate-producing capacity.
It remains unclear whether overall degree of immunosuppression or specific effects of individual immunosuppressive agents are causal for increased occurrence of BK polyomavirus (BKPyV) infection in renal transplant recipients (RTR).A prospective, multicenter, open-label randomized controlled trial in 361 de novo RTR was performed. A total of 224 RTR were randomized at 6 months into three treatment groups with dual therapy consisting of prednisolone (Pred) plus either cyclosporine (CsA), mycophenolate sodium (MPS), or everolimus (EVL). Primary outcomes were incidence of BK viruria, BK viremia, and BKPyV-associated nephropathy (BKVAN).From 6 months, incidence of BK viruria in the MPS group (43.6%) was significantly higher than in the other groups (CsA: 16.9%, EVL: 19.8%) (P=.003). BKVAN was diagnosed in 3 patients, all treated with MPS (7.8%, P=.001). Longitudinal data analysis showed a lower BKPyV load and a significantly faster clearance of BK viruria in the CsA group compared to the MPS group (P=.03).Treatment with MPS was associated with an increased incidence of BK viruria. Dual immunosuppressive therapy with CsA and Pred was associated with the lowest rate of BKPyV replication and the fastest clearance of the virus.
Mucosal-associated invariant T (MAIT) cells are innate-like T-cells that recognize bacterial riboflavin metabolites. They are present in human blood but are abundant at barrier sites, including the liver, lungs, and kidneys, where they possess a CD69+ /CD103+/- tissue-resident phenotype. In renal tissue, MAIT cells likely defend against the ascending uropathogens responsible for urinary tract infections (UTIs), which are common, especially among renal transplant recipients (RTRs). Nevertheless, the functional role for MAIT cells in renal tissue and the influence of renal transplantation on MAIT cells remains unclear. Using multiparameter flow cytometry and the MR1-tetramer, we characterized MAIT cell phenotype and function in healthy renal tissue (n = 6), renal transplants explanted after allograft failure (n = 14) and in blood from healthy controls (n = 20) and RTRs before and 1-year after transplantation (n = 21). MAIT cells in renal tissue constitute a distinct CD69+ CD103+/- population that displays typical phenotypic features of tissue-resident T-cells and is skewed toward IL-2, GM-CSF, and IL-17A production upon stimulation. The circulating MAIT cell population was not decreased in number in RTRs pre- or post-transplantation. Tissue-resident MAIT cells in the kidney represent a functionally distinct population. This shows how MAIT cells in the kidney may be involved in the protection against microorganisms.
Cognitive impairment is very common in chronic kidney disease (CKD) and is strongly associated with increased mortality. This review article will discuss the pathophysiology of cognitive impairment in CKD, as well as the effect of dialysis and transplantation on cognitive function. In CKD, uremic toxins, hyperparathyroidism and Klotho deficiency lead to chronic inflammation, endothelial dysfunction and vascular calcifications. This results in an increased burden of cerebrovascular disease in CKD patients, who consistently have more white matter hyperintensities, microbleeds, microinfarctions and cerebral atrophy on magnetic resonance imaging scans. Hemodialysis, although beneficial in terms of uremic toxin clearance, also contributes to cognitive decline by causing rapid fluid and osmotic shifts. Decreasing the dialysate temperature and increasing total dialysis time limits these shifts and helps maintain cognitive function in hemodialysis patients. For many patients, kidney transplantation is the preferred treatment modality, because it reverses the underlying mechanisms causing cognitive impairment in CKD. These positive effects have to be balanced against the possible neurotoxicity of infections and immunosuppressive medications, especially glucocorticosteroids and calcineurin inhibitors. A limited number of studies have addressed the overall effect of transplantation on cognitive function. These have mostly found an improvement after transplantation, but have a limited applicability to daily practice because they have only included relatively young patients.
Although natural killer (NK) cells are recognized for their modulation of immune responses, the mechanisms by which human NK cells mediate immune regulation are unclear. Here, we report that expression of human leukocyte antigen (HLA)-DP, a ligand for the activating NK cell receptor NKp44, is significantly upregulated on CD8
Ischaemia-reperfusion (IR) injury is an important determinant of delayed graft function (DGF) affecting allograft function. Mitochondrial DNA (mtDNA) is released upon cell death and platelet activation into the extracellular environment and has been suggested to be a biomarker in several diseases. Whether extracellular mtDNA accumulates in plasma and/or urine upon renal IR and predisposes DGF is unknown.C57BL/6J wild-type mice were subjected to renal IR. In addition, an observational case-control study was set up enrolling 43 patients who underwent kidney transplantation. One day post-IR in mice and a few days following renal transplantation in human, blood and urine were collected. Patients were stratified into DGF and non-DGF groups.mtDNA-encoded genes accumulate in urine and plasma in both mice subjected to renal IR injury and in humans following renal transplantation. In human renal transplant recipients, cold ischaemia time and renal function correlate with urinary mtDNA levels. Urinary mtDNA levels but not urinary nuclear DNA levels were significantly higher in the DGF group compared with the non-DGF group. Multiple receiver operating characteristic curves revealed significant diagnostic performance for mtDNA-encoded genes cytochrome c oxidase III (COXIII); nicotinamide adenine dinucleotide hydrogen subunit 1 (NADH-deh); mitochondrially encoded, mitochondrially encoded nicotinamide adenine dinucleotide dehydrogenase 2 (MT-ND2) with an area under the curve of, respectively, 0.71 [P = 0.03; 95% confidence interval (CI) 0.54-0.89], 0.75 (P = 0.01; 95% CI 0.58-0.91) and 0.74 (P = 0.02; 95% CI 0.58-0.89).These data suggest that renal ischaemia time determines the level of mtDNA accumulation in urine, which associates with renal allograft function and the diagnosis of DGF following renal transplantation.