Thyroid nodule classification and segmentation in ultrasound images are crucial for computer-aided diagnosis; however, they face limitations owing to insufficient labeled data. In this study, we proposed a multi-view contrastive self-supervised method to improve thyroid nodule classification and segmentation performance with limited manual labels. Our method aligns the transverse and longitudinal views of the same nodule, thereby enabling the model to focus more on the nodule area. We designed an adaptive loss function that eliminates the limitations of the paired data. Additionally, we adopted a two-stage pre-training to exploit the pre-training on ImageNet and thyroid ultrasound images. Extensive experiments were conducted on a large-scale dataset collected from multiple centers. The results showed that the proposed method significantly improves nodule classification and segmentation performance with limited manual labels and outperforms state-of-the-art self-supervised methods. The two-stage pre-training also significantly exceeded ImageNet pre-training.
Bimaterial atomic force microscope cantilevers have been used extensively over the last 15 years as physical, chemical, and biological sensors. As a thermal sensor, the static deflection of bimaterial cantilevers, due to the mismatch of the coefficient of thermal expansion between the two materials, has been used to measure temperature changes as small as 10−6 K, heat transfer rate as small as 40 pW, and energy changes as small as 10 fJ. Bimaterial cantilevers have also been used to measure “heat transfer-distance” curves—a heat transfer analogy of the force-distance curves obtained using atomic force microscopes. In this work, we concentrate on the characterization of heat transfer from the microcantilever. The thermomechanical response of a bimaterial cantilever is used to determine the (1) thermal conductance of a bimaterial cantilever, and (2) overall thermal conductance from the cantilever to the ambient. The thermal conductance of a rectangular gold coated silicon nitride cantilever is Gc=4.09±0.04 μW K−1. The overall thermal conductance from the cantilever to the ambient (at atmospheric pressure) is Ga=55.05±0.69 μW K−1. The effective heat transfer coefficient from the cantilever to the ambient (at atmospheric pressure) is determined to be ≈3400 W m−2 K−1.
Magnetotactic bacteria (MTB) are worth studying because of magnetosome biomineralization. Magnetosome biogenesis in MTB is controlled by multiple genes known as magnetosome-associated genes. Recent advances in bioinformatics provide a unique opportunity for studying functions of magnetosome-associated genes and networks that they are involved in. Furthermore, various types of bioinformatics analyses can also help identify genes associated with magnetosome biogenesis. To predict novel magnetosome-associated genes in the extended CtrA regulon, we analyzed expression data of Magnetospirillum magneticum AMB-1 in the GSE35625 dataset in NCBI GEO. We identified 10 potential magnetosome-associated genes using a combinational approach of differential expression analysis, Gene ontology and Kyoto encyclopedia of genes and genomes pathway enrichment analysis, protein-protein interaction network analysis and weighted gene co-expression network analysis. Meanwhile, we also discovered and compared two co-expression modules that most known magnetosome-associated genes belong to. Our comparison indicated the importance of energy on regulating co-expression module structures for magnetosome biogenesis. At the last stage of our research, we predicted at least four real magnetosome-associated genes out of 10 potential genes, based on a comparison of evolutionary trees between known and potential magnetosome-associated genes. Because of the discovery of common subtrees that the stressed species are enriched in, we proposed a hypothesis that multiple types of environmental stress can trigger magnetosome evolution in different waters, and therefore its evolution can recur at different times in various locations on earth. Overall, our research provides useful information for identifying new MTB species and understanding magnetosome biogenesis.
To perform in vitro magnetic resonance imaging on magnetic iron oxide (Fe(2)O(3)-PLL) labeled rabbit peripheral blood endothelial progenitor cells (EPCs).Fe(2)O(3) was incubated with PLL for 2 hours to form Fe(2)O(3)-PLL. Rabbit peripheral blood mononuclear cells (MNCs) were isolated and EPCs were selected by adherence method, expanded and incubated with Fe(2)O(3)-PLL. Intracellular iron was detected by Prussian blue stain and under electron microscope. MTT assay was used to evaluate cell survival and proliferation of Fe(2)O(3)-PLL labeled EPCs. Flow cytometry was used to analysis cell cycle and apoptosis. The cells underwent in vitro MR imaging with various sequences.Iron-containing intracytoplasmatic vesicles could be observed clearly with Prussian blue staining and electron microscope observation. Survival, life cycle and apoptosis values obtained by MTT and flow cytometry analysis were similar among unlabelled EPCs and EPCs labeled with various concentrations Fe(2)O(3)-PLL. The signal intensity on MRI was significantly decreased in labeled cells compared with that in unlabeled cells. The percentage change in signal intensity (DeltaSI) was most significant on T(2)*WI and DeltaSI was significantly lower in cells labeled for 7 days than that labeled for 1 day.The rabbit peripheral blood EPCs can be labeled with Fe(2)O(3)-PLL without significant change in viability and proliferation. The labeled EPCs can be imaged with standard 1.5 T MR equipment. The degree of MR signal decreasing may indirectly reflect the cells count, growth state and division.