Abstract Prelithiation technology can improve the service life of batteries, but whether it will affect the safety of batteries has not been studied. In this paper, the temperature differences between LiFePO 4 /C batteries with prelithiation technology and conventional LiFePO 4 /C batteries in overcharge test are analysed, the shell deformation values of these two types of batteries are compared, and the influence of battery capacity retention rate on overcharge safety of batteries is discussed. The analysis shows that there is no obvious difference in overcharge safety between two types of batteries, and batteries with prelithiation technology are similar to conventional batteries in terms of shell deformation value, the highest temperature of shell and the temperature fluctuation of flue gas escaping from pressure relief valve.
Metastasis leads to poor prognosis in colorectal cancer patients, and there is a growing need for new therapeutic targets. TMEM16A (ANO1, DOG1 or TAOS2) has recently been identified as a calcium-activated chloride channel (CaCC) and is reported to be overexpressed in several malignancies; however, its expression and function in colorectal cancer (CRC) remains unclear. In this study, we found expression of TMEM16A mRNA and protein in high-metastatic-potential SW620, HCT116 and LS174T cells, but not in primary HCT8 and SW480 cells, using RT-PCR, western blotting and immunofluorescence labeling. Patch-clamp recordings detected CaCC currents regulated by intracellular Ca2+ and voltage in SW620 cells. Knockdown of TMEM16A by short hairpin RNAs (shRNA) resulted in the suppression of growth, migration and invasion of SW620 cells as detected by MTT, wound-healing and transwell assays. Mechanistically, TMEM16A depletion was accompanied by the dysregulation of phospho-MEK, phospho-ERK1/2 and cyclin D1 expression. Flow cytometry analysis showed that SW620 cells were inhibited from the G1 to S phase of the cell cycle in the TMEM16A shRNA group compared with the control group. In conclusion, our results indicate that TMEM16A CaCC is involved in growth, migration and invasion of metastatic CRC cells and provide evidence for TMEM16A as a potential drug target for treating metastatic colorectal carcinoma.
Abstract Although there are various advancements in biomedical in the past few decades, there are still challenges in the treatment of brain diseases. The main difficulties are the inability to deliver a therapeutic dose of the drug to the brain through the blood‐brain barrier (BBB) and the serious side effects of the drug. Thus, it is essential to select biocompatible drug carriers and novel therapeutic tools to better enhance the effect of brain disease treatment. In recent years, biomimetic nanoparticles (BNPs) based on natural cell membranes, which have excellent biocompatibility and low immunogenicity, are widely used in the treatment of brain diseases to enable the drug to successfully cross the BBB and target brain lesions. BNPs can prolong the circulation time in vivo, are more conducive to drug aggregation in brain lesions. Cell membranes (CMs) from cancer cells (CCs), red blood cells (RBCs), white blood cells (WBCs), and so on are used as biomimetic coatings for nanoparticles (NPs) to achieve the ability to target, evade clearance, or stimulate the immune system. This review summarizes the application of different cell sources as BNPs coatings in the treatment of brain diseases and discusses the possibilities and challenges of clinical translation.
TMEM16A, a calcium-activated chloride channel (CaCC), is highly amplified and expressed in human cancers and is involved in the growth and metastasis of some malignancies. Inhibition of TMEM16A represents a novel pharmaceutical approach for the treatment of cancers and metastases. The purpose of this study is to identify a new TMEM16A inhibitor, investigate the effects of this inhibitor on the proliferation and metastasis of TMEM16A-amplified SW620 cells, and to elucidate the underlying molecular mechanism in vitro. We identified a novel small-molecule TMEM16A inhibitor dehydroandrographolide (DP). By using patch clamp electrophysiology, we showed that DP inhibited TMEM16A chloride currents in Fisher rat thyroid (FRT) cells that were transfected stably with human TMEM16A and in TMEM16A-overexpressed SW620 cells but did not alter cystic fibrosis transmembrane conductance regulator (CFTR) chloride currents. Further functional studies showed that DP suppressed the proliferation of SW620 cells in a dose- and time-dependent manner using MTT assays. Moreover, DP significantly inhibited migration and invasion of SW620 cells as detected by wound-healing and transwell assays. Further mechanistic study demonstrated that knockdown of human TMEM16A decreased the inhibitory effect of DP on the proliferation of SW620 cells and that TMEM16A-dependent cells (SW620 and HCT116) were more sensitive to DP than TMEM16A-independent cells (SW480 and HCT8). In addition, we found that treatment of SW620 cells with DP led to a decrease in TMEM16A protein levels but had no effect on TMEM16A mRNA levels. The current work reveals that DP, a novel TMEM16A inhibitor, exerts its anticancer activity on SW620 cells partly through a TMEM16A-dependent mechanism, which may introduce a new targeting approach for an antitumour therapy in TMEM16A-amplified cancers.
In this study, we investigate the enhancement of effective transconductance and gain linearity in submicrometer gate AlGaN-barrier-based transistors utilizing ScAlN/GaN coupling-channel structures. A novel asymmetric gate design, incorporating an AlGaN cap on ScAlN/GaN HEMT, is proposed. This configuration demonstrates a flat transconductance profile and significantly reduced transconductance derivative, thereby improving the linearity of GaN-based transistors. For transistors with a gate length of 0.5 μm, both the current gain cut-off frequency and power gain cut-off frequency are measured at 53.52 GHz and 72.98 GHz, respectively. These values represent a more than threefold increase from the corresponding frequencies of conventional devices. Moreover, the theoretical Output Third-Order Intercept value of the proposed structure has increased by 7.5 dBm compared to conventional HEMTs. This superior linear performance can be attributed to the combined effect of AlGaN cap layer and air cavity. Furthermore, the introduction of the ScAlN layer results in a substantial impact, including a decrease in electron concentration from 4.96 × 1019/cm3 to 1.98 × 1019/cm3 and an increase in electron velocity from 4.5 × 107 to 7.6 × 108 cm/s. These findings underscore the potential of the proposed device for high-frequency applications requiring superior linearity.
Two novel aromatic imides, diarylcyclopentadienone-fused naphthalimides (BCPONI-2Br and TCPONI-2Br), are designed and synthesized by condensation coupling cyclopentadienone derivatives at the lateral position of naphthalimide skeleton. It has been found that BCPONI-2Br and TCPONI-2Br are highly electron-withdrawing acceptor moieties, which possess broad absorption bands and very low-lying LUMO energy levels, as low as -4.02 eV. On the basis of both building blocks, six low bandgap D-A copolymers (P1-P6) are prepared via Suzuki or Stille coupling reactions. The optical and electrochemical properties of the polymers are fine-tuned by the variations of donors (carbazole, benzodithiophene, and dithienopyrrole) and π-conjugation linkers (thiophene and benzene). All polymers exhibit several attractive photophysical and electrochemical properties, i.e., broad near-infrared (NIR) absorption, deep-lying LUMO levels (between -3.88 and -3.76 eV), and a very small optical bandgap (Egopt) as low as 0.81 eV, which represents the first aromatic diimide-based polymer with an Egopt of <1.0 eV. An investigation of charge carrier transport properties shows that P5 exhibits a moderately high hole mobility of 0.02 cm2 V-1 s-1 in bottom-gate field-effect transistors (FETs) and a typical ambipolar transport behavior in top-gate FETs. The findings suggest that BCPONI-2Br, TCPONI-2Br, and the other similar acceptor units are promising building blocks for novel organic semiconductors with outstanding NIR activity, high electron affinity, and low bandgap, which can be extended to various next-generation optoelectronic devices.