Nitrophorins 1−4 (NP1−4) are ferriheme proteins from the blood-sucking insect Rhodnius prolixus that transport nitric oxide (NO) to the victim, sequester histamine, and inhibit blood coagulation. Here, we report kinetic and thermodynamic analyses for ligand binding by all four proteins and their reduction potentials. All four undergo biphasic association and dissociation reactions with NO. The initial association is fast (1.5−33 μM-1 s-1) and similar to that of elephant metmyoglobin. However, unlike in metmyoglobin, a slower second phase follows (∼50 s-1), and the stabilized final complexes are resistant to autoreduction (E° = +3 to +154 mV vs normal hydrogen electrode). NO dissociation begins with a slow, pH-dependent step (0.02−1.4 s-1), followed by a faster phase that is again similar to that of metmyoglobin (3−52 s-1). The equilibrium dissociation constants are quite small (1−850 nM). NP1 and NP4 display larger release rate constants and smaller association rate constants than NP2 and NP3, leading to values for Kd that are about 10-fold greater. The results are discussed in light of the recent crystal structures of NP1, NP2, and NP4, which display open, polar distal pockets, and of NP4−NO, which displays an NO-induced conformational change that leads to expulsion of solvent and complete burial of the NO ligand in a now nonpolar distal pocket. Taken together, the results suggest that tighter NO binding in the nitrophorins is due to the trapping of the molecule in a nonpolar distal pocket rather than through formation of particularly strong Fe−NO or hydrogen bonds.
LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect "yellow" family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.
Mammalian Toll-like receptors (TLRs) play an important role in the innate recognition of pathogens by dendritic cells (DCs). Although TLRs are clearly involved in the detection of bacteria and viruses, relatively little is known about their function in the innate response to eukaryotic microorganisms. Here we identify a profilin-like molecule from the protozoan parasite Toxoplasma gondii that generates a potent interleukin-12 (IL-12) response in murine DCs that is dependent on myeloid differentiation factor 88. T. gondii profilin activates DCs through TLR11 and is the first chemically defined ligand for this TLR. Moreover, TLR11 is required in vivo for parasite-induced IL-12 production and optimal resistance to infection, thereby establishing a role for the receptor in host recognition of protozoan pathogens.
Blood-feeding disease vectors mitigate the negative effects of hemostasis and inflammation through the binding of small-molecule agonists of these processes by salivary proteins. In this study, a lipocalin protein family member (LTBP1) from the saliva of Rhodnius prolixus, a vector of the pathogen Trypanosoma cruzi, is shown to sequester cysteinyl leukotrienes during feeding to inhibit immediate inflammatory responses. Calorimetric binding experiments showed that LTBP1 binds leukotrienes C4 (LTC4), D4 (LTD4), and E4 (LTE4) but not biogenic amines, adenosine diphosphate, or other eicosanoid compounds. Crystal structures of ligand-free LTBP1 and its complexes with LTC4 and LTD4 reveal a conformational change during binding that brings Tyr114 into close contact with the ligand. LTC4 is cleaved in the complex, leaving free glutathione and a C20 fatty acid. Chromatographic analysis of bound ligands showed only intact LTC4, suggesting that cleavage could be radiation-mediated.
The function of the antigen-5/CAP family of proteins found in the salivary gland of bloodsucking animals has remained elusive for decades. Antigen-5 members from the hematophagous insects Dipetalogaster maxima (DMAV) and Triatoma infestans (TIAV) were expressed and discovered to attenuate platelet aggregation, ATP secretion, and thromboxane A2 generation by low doses of collagen (<1 μg/ml) but no other agonists. DMAV did not interact with collagen, glycoprotein VI, or integrin α2β1. This inhibitory profile resembles the effects of antioxidants Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in platelet function. Accordingly, DMAV was found to inhibit cytochrome c reduction by O2⨪ generated by the xanthine/xanthine oxidase, implying that it exhibits antioxidant activity. Moreover, our results demonstrate that DMAV blunts the luminescence signal of O2⨪ generated by phorbol 12-myristate 13-acetate-stimulated neutrophils. Mechanistically, inductively coupled plasma mass spectrometry and fluorescence spectroscopy revealed that DMAV, like Cu,Zn-SOD, interacts with Cu2+, which provides redox potential for catalytic removal of O2⨪. Notably, surface plasmon resonance experiments (BIAcore) determined that DMAV binds sulfated glycosaminoglycans (e.g. heparin, KD ∼100 nmol/liter), as reported for extracellular SOD. Finally, fractions of the salivary gland of D. maxima with native DMAV contain Cu2+ and display metal-dependent antioxidant properties. Antigen-5/CAP emerges as novel family of Cu2+-dependent antioxidant enzymes that inhibit neutrophil oxidative burst and negatively modulate platelet aggregation by a unique salivary mechanism. The function of the antigen-5/CAP family of proteins found in the salivary gland of bloodsucking animals has remained elusive for decades. Antigen-5 members from the hematophagous insects Dipetalogaster maxima (DMAV) and Triatoma infestans (TIAV) were expressed and discovered to attenuate platelet aggregation, ATP secretion, and thromboxane A2 generation by low doses of collagen (<1 μg/ml) but no other agonists. DMAV did not interact with collagen, glycoprotein VI, or integrin α2β1. This inhibitory profile resembles the effects of antioxidants Cu,Zn-superoxide dismutase (Cu,Zn-SOD) in platelet function. Accordingly, DMAV was found to inhibit cytochrome c reduction by O2⨪ generated by the xanthine/xanthine oxidase, implying that it exhibits antioxidant activity. Moreover, our results demonstrate that DMAV blunts the luminescence signal of O2⨪ generated by phorbol 12-myristate 13-acetate-stimulated neutrophils. Mechanistically, inductively coupled plasma mass spectrometry and fluorescence spectroscopy revealed that DMAV, like Cu,Zn-SOD, interacts with Cu2+, which provides redox potential for catalytic removal of O2⨪. Notably, surface plasmon resonance experiments (BIAcore) determined that DMAV binds sulfated glycosaminoglycans (e.g. heparin, KD ∼100 nmol/liter), as reported for extracellular SOD. Finally, fractions of the salivary gland of D. maxima with native DMAV contain Cu2+ and display metal-dependent antioxidant properties. Antigen-5/CAP emerges as novel family of Cu2+-dependent antioxidant enzymes that inhibit neutrophil oxidative burst and negatively modulate platelet aggregation by a unique salivary mechanism.
Previous studies of erythromycin biosynthesis have indicated that a cytochrome P-450 monooxygenase system is responsible for hydroxylation of 6-deoxyerythronolide B to erythronolide B as part of erythromycin biosynthesis in Saccharopolyspora erythraea (A. Shafiee and C. R. Hutchinson, Biochemistry 26:6204-6210 1987). The enzyme was previously purified to apparent homogeneity and found to have a catalytic turnover number of approximately 10(-3) min-1. More recently, disruption of a P-450-encoding sequence (eryF) in the region of ermE, the erythromycin resistance gene of S. erythraea, produced a 6-deoxyerythronolide B hydroxylation-deficient mutant (J. M. Weber, J. O. Leung, S. J. Swanson, K. B. Idler, and J. B. McAlpine, Science 252:114-116, 1991). In this study we purified the catalytically active cytochrome P-450 fraction from S. erythraea and found by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis that it consists of a major and a minor P-450 species. The gene encoding the major species (orf405) was cloned from genomic DNA and found to be distinct from eryF. Both the orf405 and eryF genes were expressed in Escherichia coli, and the properties of the proteins were compared. Heterologously expressed EryF and Orf405 both reacted with antisera prepared against the 6-deoxyerythronolide B hydroxylase described by Shafiee and Hutchinson (1987), and the EryF polypeptide comigrated with the minor P-450 species from S. erythraea on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. In comparisons of enzymatic activity, EryF hydroxylated a substrate with a turnover number of 53 min-1, whereas Orf405 showed no detectable activity with a 6-deoxyerythronolide B analog. Both enzymes showed weak activity in the O-dealkylation of 7-ethoxycoumarin. We conclude that the previously isolated 6-deoxyerythronolide B hydroxylase was a mixture of two P-450 enzymes and that only the minor form shows 6-deoxyerythronolide B hydroxylase activity.