Mutations affecting transforming growth factor-beta (TGF-β) superfamily receptors, activin receptor-like kinase (ALK)-1, and endoglin (ENG) occur in patients with pulmonary arterial hypertension (PAH). To determine whether the TGF-β/ALK1/ENG pathway was involved in PAH, we investigated pulmonary TGF-β, ALK1, ALK5, and ENG expressions in human lung tissue and cultured pulmonary-artery smooth-muscle-cells (PA-SMCs) and pulmonary endothelial cells (PECs) from 14 patients with idiopathic PAH (iPAH) and 15 controls. Seeing that ENG was highly expressed in PEC, we assessed the effects of TGF-β on Smad1/5/8 and Smad2/3 activation and on growth factor production by the cells. Finally, we studied the consequence of ENG deficiency on the chronic hypoxic-PH development by measuring right ventricular (RV) systolic pressure (RVSP), RV hypertrophy, and pulmonary arteriolar remodeling in ENG-deficient (Eng+/−) and wild-type (Eng+/+) mice. We also evaluated the pulmonary blood vessel density, macrophage infiltration, and cytokine expression in the lungs of the animals. Compared to controls, iPAH patients had higher serum and pulmonary TGF-β levels and increased ALK1 and ENG expressions in lung tissue, predominantly in PECs. Incubation of the cells with TGF-β led to Smad1/5/8 phosphorylation and to a production of FGF2, PDGFb and endothelin-inducing PA-SMC growth. Endoglin deficiency protected mice from hypoxic PH. As compared to wild-type, Eng+/− mice had a lower pulmonary vessel density, and no change in macrophage infiltration after exposure to chronic hypoxia despite the higher pulmonary expressions of interleukin-6 and monocyte chemoattractant protein-1. The TGF-β/ALK1/ENG signaling pathway plays a key role in iPAH and experimental hypoxic PH via a direct effect on PECs leading to production of growth factors and inflammatory cytokines involved in the pathogenesis of PAH.
Rationale: The complex and multifactorial pathogenesis of pulmonary hypertension (PH) involves constriction, remodeling, and in situ thrombosis of pulmonary vessels. Both serotonin (5-HT) and Rho kinase signaling may contribute to these alterations.Objectives: To investigate possible links between the 5-HT transporter (5-HTT) and RhoA/Rho kinase pathways, as well as their involvement in the progression of human and experimental PH.Methods: Biochemical and functional analyses of lungs, platelets, and pulmonary artery smooth muscle cells (PA-SMCs) from patients with idiopathic PH (iPH) and 5-HTT overexpressing mice.Measurements and Main Results: Lungs, platelets, and PA-SMCs from patients with iPH were characterized by marked elevation in RhoA and Rho kinase activities and a strong increase in 5-HT binding to RhoA indicating RhoA serotonylation. The 5-HTT inhibitor fluoxetine and the type 2 transglutaminase inhibitor monodansylcadaverin prevented 5-HT–induced RhoA serotonylation and RhoA/Rho kinase activation, as well as 5-HT–induced proliferation of PA-SMCs from iPH patients that was also inhibited by the Rho kinase inhibitor fasudil. Increased Rho kinase activity, RhoA activation, and RhoA serotonylation were also observed in lungs from SM22–5-HTT+mice, which overexpress 5-HTT in smooth muscle and spontaneously develop PH. Treatment of SM22–5-HTT+ mice with either fasudil or fluoxetine limited PH progression and RhoA/Rho kinase activation.Conclusions: RhoA and Rho kinase activities are increased in iPH, in association with enhanced RhoA serotonylation. Direct involvement of the 5-HTT/RhoA/Rho kinase signaling pathway in 5-HT–mediated PA-SMC proliferation and platelet activation during PH progression identify RhoA/Rho kinase signaling as a promising target for new treatments against PH.
Voltage-gated potassium (Kv)1.5 is decreased in pulmonary arteries (PAs) of patients with idiopathic pulmonary arterial hypertension (IPAH) and in experimental models including mice with SM22alpha-targeted overexpression of the serotonin transporter (5-HTT). The mechanisms underlying these abnormalities, however, remain unknown. Dichloroacetate (DCA) inhibits chronic hypoxia- or monocrotaline-induced PAH by inhibiting nuclear factor of activated T-cells (NFAT)c2 and increasing Kv1.5. Therefore, we hypothesized that DCA could regress established PAH in SM22-5-HTT+ mice. We evaluated pulmonary hemodynamics, vascular remodeling, NFATc2, and Kv1.5 protein in 20-wk-old SM22-5-HTT+ or wild-type mice treated for 1, 7, and 21 d with DCA, cyclosporine-A (NFAT inhibitor), or vehicle. DCA partially reversed PAH in SM22-5-HTT+ mice by decreasing proliferation and increasing apoptosis in muscularized PAs. Furthermore, serotonin (10(-8)-10(-6) M) dose-dependently increased PA-smooth muscle cell (PA-SMC) proliferation in culture (EC(50)=0.97 x 10(-7) M) and DCA (5 x 10(-4) M) vs. PBS markedly reduced the growth of PA-SMC from IPAH and control patients treated with the highest dose of serotonin by 50 and 30%, respectively. Finally, although serotonin induces NFATc2 activation in PA-SMCs, inhibition of NFATc2 alone with cyclosporine-A was not sufficient for reversing PAH in this model. Our results support the possibility that DCA may be an interesting agent for investigation in patients with PAH.