Abstract. Water vapour is one of the most important greenhouse gases. Long-term changes in the amount of water vapour in the atmosphere need to be monitored not only for its direct role as a greenhouse gas but also because of its role in amplifying other feedbacks such as clouds and albedo. In recent decades, monitoring of water vapour on a regular and continuous basis has become possible as a result of the steady increase in the number of deployed global positioning satellite (GPS) ground-based receivers. However, the Horn of Africa remained a data-void region in this regard until recently, when some GPS ground-receiver stations were deployed to monitor tectonic movements in the Great Rift Valley. This study seizes this opportunity and the installation of a Fourier transform infrared spectrometer (FTIR) at Addis Ababa to assess the quality and comparability of precipitable water vapour (PWV) from GPS, FTIR, radiosonde and interim ECMWF Re-Analysis (ERA-Interim) over Ethiopia. The PWV from the three instruments and the reanalysis show good correlation, with correlation coefficients in the range from 0.83 to 0.92. On average, GPS shows the highest PWV followed by FTIR and radiosonde observations. ERA-Interim is higher than all measurements with a bias of 4.6 mm compared to GPS. The intercomparison between GPS and ERA-Interim was extended to seven other GPS stations in the country. Only four out of eight GPS stations included simultaneous surface pressure observations. Uncertainty in the model surface pressure of 1 hPa can cause up to 0.35 mm error in GPS PWV. The gain obtained from using observed surface pressure in terms of reducing bias and strengthening correlation is significant but shows some variations among the GPS sites. The comparison between GPS and ERA-Interim PWV over the seven other GPS stations shows differences in the magnitude and sign of bias of ERA-Interim with respect to GPS PWV from station to station. This feature is also prevalent in diurnal and seasonal variabilities. The spatial variation in the relationship between the two data sets is partly linked to variation in the skill of the European Centre for Medium-Range Weather Forecasts (ECMWF) model over different regions and seasons. This weakness in the model is related to poor observational constraints from this part of the globe and sensitivity of its convection scheme to orography and land surface features. This is consistent with observed wet bias over some highland stations and dry bias over few lowland stations. The skill of ECMWF in reproducing realistic PWV varies with time of the day and season, showing large positive bias during warm and wet summer at most of the GPS sites.
Abstract. Ground-based Fourier-transform infrared (FTIR) solar absorption spectroscopy is a powerful remote sensing technique providing information on the vertical distribution of various atmospheric constituents. This work presents the first evaluation of a mid-resolution ground-based FTIR to measure tropospheric ozone, independently of stratospheric ozone. This is demonstrated using a new atmospheric observatory (named OASIS for "Observations of the Atmosphere by Solar absorption Infrared Spectroscopy"), installed in Créteil (France). Indeed, the information content of OASIS ozone retrievals is clearly sufficient to monitor separately tropospheric (from the surface up to 8 km) and stratospheric ozone. Daily mean tropospheric ozone columns derived from the Infrared Atmospheric Sounding Interferometer (IASI) and from OASIS measurements have been compared for summer 2009 and a good agreement of −5.6 (±16.1) % is observed. Also, a qualitative comparison between in-situ surface ozone measurements and OASIS data clearly shows OASIS's capacity to monitor seasonal tropospheric ozone variations, as well as ozone pollution episodes in summer 2009 around Paris. Two extreme pollution events were identified (on the 1 July and 6 August 2009) for which ozone partial columns from OASIS and predictions from a regional air-quality model (CHIMERE) were compared by respecting temporal and spatial coincidence criteria. Quantitatively, an average bias of 0.2 %, a mean square error deviation of 7.6 %, and a correlation coefficient of 0.91 was found between CHIMERE and OASIS. This demonstrates that a mid-resolution FTIR instrument in ground-based solar absorption geometry is a promising technique for monitoring tropospheric ozone.
Ammonia (NH 3 ) is a reactive air pollutant strongly affecting both environment and human health. Massive industrial production of ammonia and the development of crops enhancing biological nitrogen fixation disturb the natural cycle and contribute to eutrophication, loss of biodiversity and acidification of various environments (soils, lakes, streams, etc.) (Galloway et al., 2003). Within the troposphere, NH 3 can react with SO 2 or HNO 3 to produce fine particulate matter (PM2.5) of ammonium salts (Behera et al., 2013). Thus, measuring atmospheric ammonia is necessary to better constraint particulate matter formation and reactive nitrogen budgets in air quality models.
In the present study, we use the mid-resolution OASIS (Observations of the Atmosphere by Solar absorption Infrared Spectroscopy) ground-based FTIR solar observatory (Viatte et al., 2011 ; Chelin et al., 2015) to derive ammonia total columns over Paris suburbs (Creteil, 48.79°N, 2.44°E, France) using the PROFFIT inversion code (Hase et al., 2004). Thus, we have obtained the first multi-year time series of NH 3 ground-based measurements in Paris region (2009-2016).
We analyze diurnal and seasonal variabilities of NH3 and study the relationship with meteorological variables. We also compare NH 3 total columns derived from OASIS and those from IASI satellite measurements (Whitburn et al., 2016).
Abstract. Among the more than twenty ground-based FTIR (Fourier Transform infrared) stations currently operating around the globe, only a few have provided formaldehyde (HCHO) total columns time-series until now. Although several independent studies have shown that the FTIR measurements can provide accurate and precise formaldehyde total columns, the spatial coverage has not been optimal for providing good diagnostics for satellite or model validation. Furthermore, these past studies used different retrieval settings, and biases as large as 50 % can be observed in the HCHO total columns depending on these retrieval choices, which is also a weakness for validation studies combining data from different ground-based stations. For the present work, the HCHO retrieval settings have been optimized based on experience gained from the past studies and have been applied consistently at the 21 participating stations, most of them are either part of the Network for the Detection of Atmospheric Composition Change (NDACC), or under consideration for membership. We provide the harmonized settings and a characterization of the HCHO FTIR products. Depending on the station, the systematic and random uncertainties of an individual HCHO total column measurement lie between 11 and 31 %; and between 1 and 11 × 1014 molec/cm2, respectively, with median values among all stations of 14 % and 2.6 × 1014 molec/cm2. This unprecedented harmonized formaldehyde data set from 21 ground-based FTIR stations is presented and its comparison to a global chemistry transport model shows its consistency, in absolute values as well as in seasonal cycles. The network covers very different concentration levels of formaldehyde, from very clean levels at the limit of detection (few 1013 molec/cm2) to highly polluted levels (7 × 1016 molec/cm2). Because the measurements can be made at any time during daylight, the diurnal cycle can be observed and is found to be significant at many stations. These HCHO time-series, some of them starting in the 1990's, are crucial for past and present satellite validation, and will be extended in the coming years for the next generation of satellite missions.
Abstract. Ammonia (NH3) is the most abundant alkaline compound in the atmosphere, with consequences for the environment, human health, and radiative forcing. In urban environments, it is known to play a key role in the formation of secondary aerosols through its reactions with nitric and sulfuric acids. However, there are only a few studies about NH3 in Mexico City. In this work, atmospheric NH3 was measured over Mexico City between 2012 and 2020 by means of ground-based solar absorption spectroscopy using Fourier transform infrared (FTIR) spectrometers at two sites (urban and remote). Total columns of NH3 were retrieved from the FTIR spectra and compared with data obtained from the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument. The diurnal variability of NH3 differs between the two FTIR stations and is strongly influenced by the urban sources. Most of the NH3 measured at the urban station is from local sources, while the NH3 observed at the remote site is most likely transported from the city and surrounding areas. The evolution of the boundary layer and the temperature play a significant role in the recorded seasonal and diurnal patterns of NH3. Although the vertical columns of NH3 are much larger at the urban station, the observed annual cycles are similar for both stations, with the largest values in the warm months, such as April and May. The IASI measurements underestimate the FTIR NH3 total columns by an average of 32.2±27.5 % but exhibit similar temporal variability. The NH3 spatial distribution from IASI shows the largest columns in the northeast part of the city. In general, NH3 total columns over Mexico City measured at the FTIR stations exhibited an average annual increase of 92±3.9×1013 molecules cm−2 yr−1 (urban, from 2012 to 2019) and 8.4±1.4×1013 molecules cm−2 yr−1 (remote, from 2012 to 2020), while IASI data within 20 km of the urban station exhibited an average annual increase of 38±7.6×1013 molecules cm−2 yr−1 from 2008 to 2018.
Abstract. Within the European project UFTIR (Time series of Upper Free Troposphere observations from an European ground-based FTIR network), six ground-based stations in Western Europe, from 79° N to 28° N, all equipped with Fourier Transform infrared (FTIR) instruments and part of the Network for the Detection of Atmospheric Composition Change (NDACC), have joined their efforts to evaluate the trend of several direct and indirect greenhouse gases over the period 1995–2004. The retrievals of CO, CH4, C2H6, N2O, CHClF2, and O3 have been optimized. Using the optimal estimation method, some vertical information can be obtained in addition to total column amounts. A bootstrap resampling method has been implemented to determine annual partial and total column trends for the target gases. The present work focuses on the ozone results. The retrieved time series of partial and total ozone columns are validated with ground-based correlative data (Brewer, Dobson, UV-Vis, ozonesondes, and Lidar). The observed total column ozone trends are in agreement with previous studies: 1) no total column ozone trend is seen at the lowest latitude station Izaña (28° N); 2) slightly positive total column trends are seen at the two mid-latitude stations Zugspitze and Jungfraujoch (47° N), only one of them being significant; 3) the highest latitude stations Harestua (60° N), Kiruna (68° N) and Ny-Ålesund (79° N) show significant positive total column trends. Following the vertical information contained in the ozone FTIR retrievals, we provide partial columns trends for the layers: ground-10 km, 10–18 km, 18–27 km, and 27–42 km, which helps to distinguish the contributions from dynamical and chemical changes on the total column ozone trends. We obtain no statistically significant trends in the ground–10 km layer for five out of the six ground-based stations. We find significant positive trends for the lowermost stratosphere at the two mid-latitude stations, and at Ny-Ålesund. We find smaller, but significant trends for the 18–27 km layer at Kiruna, Harestua, Jungfraujoch, and Izaña. The results for the upper layer are quite contrasted: we find significant positive trends at Kiruna, Harestua, and Jungfraujoch, and significant negative trends at Zugspitze and Izaña. These ozone partial columns trends are discussed and confronted to previous studies.
Abstract. During the Arctic winter of 2000/01, ground-based FTIR and millimetre-wave measurements revealed significant amounts of ClO over Kiruna after the final warming in February 2001. In fact, column amounts of ClO were still increased in March 2001 when temperatures were about 20K above the PSC (Polar Stratospheric Clouds) threshold. At these temperatures, chlorine activation due to heterogeneous processes on PSCs is not possible even in the presence of strong lee wave effects. In order to discuss possible reasons of this feature, time series of other chemical species will be presented and discussed, too. Measurements of HF and COF2 indicated that vortex air was still observed in mid-March 2001. Since the time series of HNO3 column amounts do not give any evidence of a denitrification later than 11 February, chlorine activation persisting for several weeks after the presence of PSCs due to denitrification is rather unlikely. The photolysis of ClONO2-rich air which had been formed at the end of February and beginning of March 2001 as well as chlorine activation due to the presence of an unusual aerosol layer are discussed as possible causes of the increased ClO column amounts after the final warming.