It is widely believed, that environmental factors play a crucial role in the etiology and outcome of psychiatric diseases such as Attention-Deficit/Hyperactivity Disorder (ADHD). A former study from our laboratory has shown that both methylphenidate (MP) and handling have a positive effect on the dopaminergic fiber density in the prefrontal cortex (PFC) of early traumatized gerbils (Meriones unguiculatus). The current study was performed to investigate if enriched environment during MP application has an additional influence on the dopaminergic and GABAergic fiber densities in the PFC and amygdala in this animal model. Animals received a single early dose of methamphetamine (MA; 50 mg/kg; i.p.) on postnatal day (PD) 14, which is known to cause multiple changes in the subsequent development of several neurotransmitter systems including the dopaminergic systems, and were then treated with oral daily applications of MP (5 mg/kg) from PD30-60. Animals treated this way were either transferred to an enriched environment after weaning (on PD30) or were kept under impoverished rearing conditions. There was no effect of an enriched environment on the dopaminergic or GABAergic fiber density neither in the PFC nor in the amygdala. With regard to former studies these results underline the particular impact of MP in the treatment of ADHD.
The naturally occurring dynamics of presynaptic axon terminals were investigated in the dentate gyrus and stratum lucidum of the spiny mouse (Acomys cahirinus) during maturation, adulthood and aging. A sensitive and selective silver-staining technique was applied to analyze neuronal lysosome accumulation (LA), indicating synaptic degradation during development. LA was quantified by counting silver grains in the inner third and outer two thirds of the molecular layer, granular layer, and the infragranular layer of the dentate gyrus, and in the strata oriens, pyramidale, lucidum and radiatum of the medial and distal regio inferior on postnatal days 21, 28, 95, 730, and 1,460. In young and adult animals, LA was most abundant within the inner molecular layer. When animals grew older, LA densities obviously decreased in the inner molecular layer but increased in the outer molecular layer. Within the stratum lucidum only the distal regio inferior showed an extremely high LA density on postnatal day 21, dramatically decreasing thereafter and reaching adult low values during the first postnatal month. By electron microscopy in the inner molecular layer we found LA in large synaptic boutons and small terminals both with distinct synaptic contact zones. Degrading presynaptic profiles may further accumulate dense bodies, zones with completely disorganized cytoplasm, and lamellarly organized whorled membrane debris. In the distal regio inferior comparable phenomena were observed in typical mossy fiber boutons. Despite these degrading events, no electron-dense degenerating terminals were found. These results on naturally occurring nondegenerative synaptic degradation are discussed with current concepts of synaptic turnover and remodelling in the developing, adult and aging brain.
Mesencephalic dopamine (DA) projections are essential for cognitive and behavioral functions and believed to play a critical role during development and aging. The dopaminergic afferents of the rodent prefrontal cortex (PFC) show an extremely prolonged maturation which is very sensitive to epigenetic challenges. However, less is known about the long-term maturation and aging of these DA axons. Therefore, immunohistochemically stained DA fibres were quantitatively examined in the PFC of the Mongolian gerbil (Meriones unguiculatus) ranging from 6 to 24 months of age. Results show a decrease in DA fibre densities in the superficial layers of the PFC in 24 month old animals compared to 6 and 12 months.
Environmental experience and drugs are two parameters that affect the maturation of neurotransmitter systems. The influence of impoverished rearing (IR) versus enriched rearing (ER) was compared in conjunction with postnatal methamphetamine (MA) treatment. The densities of immunostained 5-HT fibres were quantified in septal and temporal regions of the hippocampal dentate gyrus (DG) in young adult gerbils. In the IR group, 5-HT fibre densities were significantly increased in the molecular, granular and polymorphic layers of the DG in the temporal plane. After postnatal MA treatment, the 5-HT fibre density in the ER group reached a level equivalent to that of the IR group in nearly all respects. Under IR conditions, the pharmacological intervention significantly increased the maturation of fibre densities in septal layers only in the right hemisphere with no significant alterations in the left hemisphere and in temporal regions of either hemisphere. According to our previous studies on hippocampal neurogenesis, adaptations of 5-HT fibre densities partly proved to be positively correlated to cell proliferation rates for each of the specific conditions. Thus, the induced MA sensitivity, caused by pharmacological intervention at day 14, was manifested as direct interaction of 5-HT fibre maturation and cell proliferation in dependence of environmental factors. Both IR and MA together give us a better understanding of raphe-hippocampal plasticity and offer new perspectives for pharmacological studies on the 5-HT participation in mental disorders.
Dopamine (DA)-immunoreactivity was investigated in the prefrontal cortex of gerbils (Meriones unguiculatus). For that purpose, a sensitive and selective antibody against glutaraldehyde-conjugated dopamine was applied. All detectable fragments of dopamine-immunoreactive nerve fibres were identified in selected consecutive frontal sections and their total length was determined in both the medial and orbital prefrontal cortex on postnatal days 7, 14, 23, 30, 60, and 90. Dopamine immunoreactivity revealed exponential growth until postnatal day 30, and further increased until postnatal day 90 with reduced increments. Due to higher initial percentage growth rates the dopamine innervation in the orbital prefrontal cortex achieved maturity earlier than in the medial prefrontal areas. Quantitative maturation of the prefrontal DA innervation is discussed with current data on functional and structural development of the prefrontal cortex.