Far-field Wireless Power Transfer (WPT) and Simultaneous Wireless Information and Power Transfer (SWIPT) have attracted significant attention in the RF and communication communities. Despite the rapid progress, the problem of waveform design to enhance the output DC power of wireless energy harvester has received limited attention so far. In this paper, we bridge communication and RF design and derive novel multisine waveforms for multi-antenna wireless power transfer. The waveforms are adaptive to the channel state information and result from a posynomial maximization problem that originates from the non-linearity of the energy harvester. They are shown through realistic simulations to provide significant gains (in terms of harvested DC power) over state-of-the-art waveforms under a fixed transmit power constraint.
This paper will present the modelling, analysis and design of a load-independent Class EF inverter. This inverter is able to maintain zero-voltage switching (ZVS) operation and produce a constant output current for any load value without the need for tuning or replacement of components. The load-independent feature of this inverter is beneficial when used as the primary coil driver in multi-megahertz high power inductive wireless power transfer (WPT) applications where the distance between the coils and the load are variable. The work here begins with the traditional load-dependent Class EF topology for inversion and then specifies the criteria that are required to be met in order achieve load-independence. The design and development of a 240W load-independent Class EF inverter to drive the primary coil of a 6.78MHz WPT system will be discussed and experimental results will be presented to show the load-independence feature when the distance between the coils of the WPT system changes.
Field implementations of fully underground sensor networks face many practical challenges that have limited their overall adoption. Power management is a commonly cited issue, as operators are required to either repeatedly excavate batteries for recharging or develop complex underground power infrastructures. Prior works have proposed wireless inductive power transfer (IPT) as a potential solution to these power management issues, but misalignment is a persistent issue in IPT systems, particularly in applications involving moving vehicles or obscured (e.g., underground) coils. This paper presents an automated methodology to sense misalignments and align IPT coils using robotic actuators and sequential Monte Carlo methods. The misalignment of a Class EF inverter-driven IPT system was modeled by tracking changes as its coils move apart laterally and distally. These models were integrated with particle filters to estimate the location of a hidden coil in 3D, given a sequence of sensor measurements. During laboratory tests on a Cartesian robot, these algorithms aligned the IPT system within 1 cm (0.025 coil diameters) of peak lateral alignment. On average, the alignment algorithms required less than four sensor measurements for localization. After laboratory testing, this approach was implemented with an agricultural sensor platform at the Utah Agricultural Experiment Station in Kaysville, Utah. In this implementation, a buried sensor platform was successfully charged using an aboveground, vehicle-mounted transmitter. Overall, this work contributes to the field of underground sensor networks by successfully integrating a self-aligning wireless power delivery system with existing agricultural infrastructure. Furthermore, the alignment strategy presented in this work accomplishes coil misalignment correction without the need for complex sensor or coil architectures.
Power losses in high power HVDC converters are dominated by those that occur within the power electronic devices. This power loss is dissipated as heat at the junction of semiconductor devices. The cooling system ensures that the generated heat is evacuated outside the converter station but temperature management remains critical for the lifetime of the semiconductor devices. This paper presents the results of a study on the temperature profile of the different switches inside a multilevel converter. The steady state junction temperatures are observed through the simulation of a 20 MW Alternate Arm Converter using 1.2kA 3.3 kV IGBT modules. A comparison of the Alternate Arm Converter is made against the case of both the half-bridge and full-bridge Modular Multilevel Converter topologies. Furthermore, the concept of varying the duty-cycle of the two alternative zero-voltage states of the H-bridge modules is introduced. Simulation results demonstrate that it can change the balance of electrical and thermal stress between the two top switches and the two bottom switches of a full-bridge cell.
This paper showcases the design and development of a DC-DC converter with one input and four outputs using a high frequency resonant air-core transformer. The transmitter to receivers air-gap is 25 mm. Practical tuning equations were derived for multiple receivers which allow the converter to be optimised for overall efficiency and unity power factor at the transmit coil (i.e. zero reflected reactance). Experiments were conducted using two receive coil structures, one with four equally shaped adjacent coils in a single PCB, and the other with four differently-shaped coils featuring overlapping traces to maximise the coupling factor with the transmitter and minimise the coupling factor between the receivers. The two structures were tested and compared using the same transmitter, driven by a single-ended 13.56 MHz Class EF inverter. Single-ended Class D rectifiers were implemented at the receive side. Experiments were performed, first with equal AC test loads, and afterwards with the addition of the rectifiers and buck converters to regulate each of the four output voltages to 15 V independently. The results of the experiments implementing adjacent coils demonstrate that equal distribution of power can be achieved by modifying the tuning capacitances at the receivers with the AC loads; however, when the voltage-regulating buck converters were introduced at each output, it was only with the coil structure with overlapping traces that the required power of 10 W at each output was achieved.
We build a realistic Simultaneous Wireless Information and Power Transfer (SWIPT) prototype and experimentally analyse the harvested energy and throughput trade-off. Both time-switching and power splitting receiver architectures are implemented, and the performance comparison is carried out. Systematic SWIPT transmission signal design methods are also considered and implemented on the prototype. The harvested energy-throughput (E-T) performance with different transmission signal designs, modulation schemes, and receiver architectures are evaluated and compared. The combination of the power splitting receiver architecture and the superposition transmission signal design technique shows significant expansion of the E-T region. The experimental results fully validate the observations predicted from the theoretical signal designs and confirm the benefits of systematic signal designs on the system performance. The observations give important insights on how to design a practical SWIPT system.
This paper describes experiments which investigate the effects resulting from corrosion of air-core coils for high frequency inductive power transfer (HF-IPT).A group of coils were treated by exposing them to corrosive conditions for thirty days.Afterwards, the coils were measured with an impedance analyser and the coil with the lowest Q-factor was selected for further experiments.The treated coil was tested at the transmit side of a HF-IPT system, where the system DC-to-DC efficiency was measured and compared against an equivalent system using an untreated transmit coil.The total losses measured increased when the system was operating with the treated coil across a broad loading range, and thermal images were used to establish the additional losses on the treated coil.Analysis of the treated coil identified widespread damage to the surface of the coil.However, it was specific aggressive corrosion only found locally which was able to significantly reduce the Q-factor of the treated coil by 20%.
This paper presents 13.56 MHz inductive power transfer (IPT) through soil for sensors in agricultural applications. Two IPT system designs and their prototypes are presented. The first was designed for gathering data and observing the relationship between the performance of the coil driving circuits in response to water content, salinity, organic matter and compaction of the soil. The second prototype was designed as an application demonstrator, featuring IPT to an in-house sensor node enclosure buried 200 mm under the surface of an agricultural field. The results highlight that from the parameters studied, the combination of high salinity and high water content significantly increases the losses of the IPT system. The experiments demonstrate an over 40% rise in the losses from dc source to dc load after a 16% increase in soil water content and high salinity. In the technology demonstrator we mounted an IPT transmitter on a drone to wirelessly power an in-house bank of supercapacitors in the buried sensor-node enclosure. A peak power transfer of 30 W received at over 40% efficiency was achieved from a 22 V power supply on the drone to the energy storage under the ground. The coil separation in these experiments was 250 mm of which 200 mm correspond to the layer of soil. The coupling factor in all the experiments was lower than 5%. This system was trialled in the field for forty days and wireless power was performed five times throughout.
A new line of research on communications and signals design for Wireless Power Transfer (WPT) has recently emerged in the communication literature. Promising signal strategies to maximize the power transfer efficiency of WPT rely on (energy) beamforming, waveform, modulation and transmit diversity, and a combination thereof. To a great extent, the study of those strategies has so far been limited to theoretical performance analysis. In this paper, we study the real over-the-air performance of all the aforementioned signal strategies for WPT. To that end, we have designed, prototyped and experimented an innovative radiative WPT architecture based on Software-Defined Radio (SDR) that can operate in open-loop and closed-loop (with channel acquisition at the transmitter) modes. The prototype consists of three important blocks, namely the channel estimator, the signal generator, and the energy harvester. The experiments have been conducted in a variety of deployments, including frequency flat and frequency selective channels, under static and mobility conditions. Experiments highlight that a channeladaptive WPT architecture based on joint beamforming and waveform design offers significant performance improvements in harvested DC power over conventional single-antenna/multiantenna continuous wave systems. The experimental results fully validate the observations predicted from the theoretical signal designs and confirm the crucial and beneficial role played by the energy harvester nonlinearity.
This paper details a co-design and modelling methodology to optimise the flip-chip assembly parameters so that the overall package and system meets performance and reliability specifications for LED lighting applications. A co-design methodology is employed between device level modelling and package level modelling in order enhance the flow of information. As part of this methodology, coupled electrical, thermal and mechniacal predictions are made in order to mitigate underfill dielectric breakdown failure and solder interconnect fatigue failure. Five commercial underfills were selected for investigating the trade-off in materials properties that mitigate underfill electrical breakdown and solder joint fatigue.