Fusarium oxysporum f. sp. conglutinans (Foc) is the causal agent of Fusarium wilt disease of Brassica oleracea. A rapid, accurate, and reliable method to detect and identify plant pathogens is vitally important to integrated disease management. In this study, using a comparative genome analysis among Fusarium oxysporum (Fo), we developed a Foc-specific primer set (Focs-1/Focs-2) and established a multiplex-PCR assay. In the assay, the Focs-1/Focs-2 and universal primers for Fusarium species (W106R/F106S) could be used to detect Foc isolates in a single PCR reaction. With the optimized PCR parameters, the multiplex-PCR assay showed a high specificity for detecting Foc and was very sensitive to detect as little as 100 pg of pure Foc genomic DNA or 1 000 spores in 1 g of twice-autoclaved soil. We also demonstrated that Foc isolates were easily detected from infected plant tissues, as well as from natural field soils, using the multiplex-PCR assay. To our knowledge, this is a first report on detection Fo by comparative genomic method.
Osteoarthritis (OA) is a progressive cartilage degradation disease, concomitant with synovitis, osteophyte formation, and subchondral bone sclerosis. Over 37% of the elderly population is affected by OA, and the number of cases is increasing as the global population ages. Therefore, the objective of this study was to identify and analyze the hub genes of OA combining with comprehensive bioinformatics analysis tools to provide theoretical basis in further OA effective therapies. Two sample sets of GSE46750 contained 12 pairs OA synovial membrane and normal samples harvested from patients as well as GSE98918 including 12 OA and non-OA patients were downloaded from the Gene Expression Omnibus database (GEO) database. Differentially expressed genes (DEGs) were identified using Gene Expression Omnibus 2R (GEO2R), followed by functional enrichment analysis, protein-protein interaction networks construction. The hub genes were identified and evaluated. An OA rat model was constructed, hematoxylin and eosin staining, safranin O/fast green staining, cytokines concentrations of serum were used to verify the model. The hub genes expression level in the knee OA samples were verified using RT-qPCR. The top 20 significantly up-regulated and down-regulated DEGs were screened out from the two datasets, respectively. The top 18 GO terms and 10 KEGG pathways were enriched. Eight hub genes were identified, namely MS4A6A, C1QB, C1QC, CD74, CSF1R, HLA-DPA1, HLA-DRA and ITGB2. Among them, the hub genes were all up-regulated in in vivo OA rat model, compared with healthy controls. The eight hub genes identified (MS4A6A, C1QB, C1QC, CD74, CSF1R, HLA-DPA1, HLA-DRA and ITGB2) were shown to be associated with OA. These genes can serve as disease markers to discriminate OA patients from healthy controls.