ABSTRACT Ignatzschineria larvae is studied for its role in decomposition and disease ecology; however, the type strain reference genome remains fragmented. The current reference genome consists of 61 contigs calculated at 82.18% complete with 10.98% contamination. Here, we announce the hybrid genome assembly as an improved single contig.
Microbial breakdown of organic material is one of the most important processes on earth, yet enormous knowledge gaps exist about its controls. We demonstrate that a universal, inter-kingdom microbial network assembles in response to nutrient-rich, terrestrial mammalian decomposition, despite selection effects of location, climate and season. We created the first metagenome-assembled genome library from mammalian decomposition-associated soils and combined it with metabolomics to identify a microbial decomposer network that interacts by cross-feeding to efficiently metabolize labile decomposition products. The key fungal and bacterial decomposers appear unique to the breakdown of terrestrial cadavers, and are rare in relative abundance across non-decomposition environments. Blow flies are suggested as an important decomposer vector and the observed lockstep of microbial interactions underlies a robust microbial forensic tool for predicting the time since death.
Population-based public health data on antibiotic resistance gene carriage is poorly surveyed. Research of the human microbiome as an antibiotic resistance reservoir has primarily focused on gut associated microbial communities, but data have shown more widespread microbial colonization across organs than originally believed, with organs previously considered as sterile being colonized. Our study demonstrates the utility of postmortem microbiome sampling during routine autopsy as a method to survey antibiotic resistance carriage in a general population. Postmortem microbial sampling detected pathogens of public health concern including genes for multidrug efflux pumps, carbapenem, methicillin, vancomycin, and polymixin resistances. Results suggest that postmortem assessments of host-associated microbial communities are useful in acquiring community specific data while reducing selective-participant biases.
ABSTRACT Campylobacter infections are a leading cause of bacterial-derived gastroenteritis worldwide with particularly profound impacts on pediatric patients in low- and middle-income countries. It remains unclear how Campylobacter impacts these hosts, though it is becoming increasingly evident that it is a multifactorial process that depends on the host immune response, the gastrointestinal microbiota, various bacterial factors, and host nutritional status. Since these factors likely vary between adult and pediatric patients in different regions of the world, it is important that studies define these attributes in well-characterized clinical cohorts in diverse settings. In this study, we analyzed the fecal microbiota and the metabolomic and micronutrient profiles of asymptomatic and symptomatic pediatric patients in Colombia who were either infected or uninfected with Campylobacter during a case-controlled study on acute diarrheal disease. Here, we report that the microbiome of Campylobacter- infected children only changed in their abundance of Campylobacter spp. despite the inclusion of children with or without diarrhea. In addition to increased Campylobacter, computational models were used to identify fecal metabolites that were associated with Campylobacter infection and found that glucose-6-phosphate and homovanillic acid were the strongest predictors of infection in these pediatric patients, which suggests that colonocyte metabolism is impacted during infection. Despite changes to the fecal metabolome, the concentrations of intestinal minerals and trace elements were not significantly impacted by Campylobacter infection but were elevated in uninfected children with diarrhea. IMPORTANCE Gastrointestinal infection with pathogenic Campylobacter species has long been recognized as a significant cause of human morbidity. Recently, it has been observed that pediatric populations in low- and middle-income countries are uniquely impacted by these organisms in that infected children can be persistently colonized, develop enteric dysfunction, and exhibit reduced development and growth. While the association of Campylobacter species with these long-term effects continues to emerge, the impact of infection on the gastrointestinal environment of these children remains uncharacterized. To address this knowledge gap, our group leveraged clinical samples collected during a previous study on gastrointestinal infections in pediatric patients to examine the fecal microbiota, metabolome, and micronutrient profiles of those infected with Campylobacter species and found that the metabolome was impacted in a way that suggests gastrointestinal cell metabolism is affected during infection, which is some of the first data indicating how gastrointestinal health in these patients may be affected.
Decomposing remains are a nutrient-rich ecosystem undergoing constant change due to cell breakdown and abiotic fluxes, such as pH level and oxygen availability. These environmental fluxes affect bacterial communities who respond in a predictive manner associated with the time since organismal death, or the postmortem interval (PMI). Profiles of microbial taxonomic turnover and transmigration are currently being studied in decomposition ecology, and in the field of forensic microbiology as indicators of the PMI. We monitored bacterial community structural and functional changes taking place during decomposition of the intestines, bone marrow, lungs, and heart in a highly controlled murine model. We found that organs presumed to be sterile during life are colonized by Clostridium during later decomposition as the fluids from internal organs begin to emulsify within the body cavity. During colonization of previously sterile sites, gene transcripts for multiple metabolism pathways were highly abundant, while transcripts associated with stress response and dormancy increased as decomposition progressed. We found our model strengthens known bacterial taxonomic succession data after host death. This study is one of the first to provide data of expressed bacterial community genes, alongside transmigration and structural changes of microbial species during laboratory controlled vertebrate decomposition. This is an important dataset for studying the effects of the environment on bacterial communities in an effort to determine which bacterial species and which bacterial functional pathways, such as amino acid metabolism, provide key changes during stages of decomposition that relate to the PMI. Finding unique PMI species or functions can be useful for determining time since death in forensic investigations.
Forensic microbiology is a field linking applications of the scientific method and the criminal justice system. Microbes show promise in providing insights into manner and time since death, including evidence from homicides, biocrimes, sexual assaults, and medical malpractices. Classical microbiology and newer technologies using next generation have allowed researchers and investigators greater target detection and resolution, and data from research in this field are ever increasing. This chapter presents a historical perspective of microbes as evidence and introduces new research of the utility of microbes in forensic science.
Group B Streptococcus (GBS) in the vaginal tract is a risk factor for preterm birth and adverse pregnancy outcomes. GBS colonization is also transient in nature, which likely reflects the contributions of pathogen determinants, interactions with commensal flora, and host factors, making this environment particularly challenging to understand. Additionally, dietary zinc deficiency is a health concern on the global scale that is known to be associated with recurrent bacterial infection and increased rate of preterm birth or stillbirth. However, the impact of zinc deficiency on vaginal health has not yet been studied. Here we use a murine model to assess the role of dietary zinc on GBS burden and the impact of GBS colonization on the vaginal microbiome. We show that GBS vaginal colonization is increased in a zinc-deficient host and that the presence of GBS significantly alters the microbial community structure of the vagina. Using machine learning approaches, we show that vaginal community turnover during GBS colonization is driven by computationally predictable changes in key taxa, including several organisms not previously described in the context of the vaginal microbiota, such as Akkermansia muciniphila. We observed that A. muciniphila increases GBS vaginal persistence and, in a cohort of human vaginal microbiome samples collected throughout pregnancy, we observed an increased prevalence of codetection of GBS and A. muciniphila in patients who delivered preterm compared to those who delivered at full term. These findings reveal the importance and complexity of both host zinc availability and native microbiome to GBS vaginal persistence. IMPORTANCE The presence of group B Streptococcus (GBS) in the vaginal tract, perturbations in the vaginal microbiota, and dietary zinc deficiency are three factors that are independently known to be associated with increased risk of adverse pregnancy outcomes. Here, we developed an experimental mouse model to assess the impact of dietary zinc deficiency on GBS vaginal burden and persistence and to determine how changes in GBS colonization impact vaginal microbial structure. We have employed unique animal, in silica metabolic, and machine learning models, paired with analyses of human cohort data, to identify taxonomic biomarkers that contribute to host susceptibility to GBS vaginal persistence. Collectively, the data reported here identify that both dietary zinc deficiency and the presence of A. muciniphila could perpetuate an increased GBS burden and prolonged exposure in the vaginal tract, which potentiate the risk of invasive infection in utero and in the newborn.
Abstract Multiple methods have been proposed to provide accurate time since death estimations, and recently, the discovery of bacterial community turnover during decomposition has shown itself to have predictable patterns that may prove useful. In this study, we demonstrate the use of metatranscriptomics from the postmortem microbiome to simultaneously obtain community structure and functional data across postmortem intervals (PMIs). We found that bacterial succession patterns reveal similar trends as detected through DNA analysis, such as increasing Clostridiaceae as decomposition occurs, strengthening the reliability of total RNA community analyses. We also provide one of the first analyses of RNA transcripts to characterize bacterial metabolic pathways during decomposition. We found distinct pathways, such as amino acid metabolism, to be strongly up‐regulated with increasing PMIs. Elucidating the metabolic activity of postmortem microbial communities provides the first steps to discovering postmortem functional biomarkers since functional redundancy across bacteria may reduce host individual microbiome variability.