Fusarium verticillioides is one of the most important fungal pathogens causing ear and stalk rot in maize. Even if frequently asymptomatic, it can produce a harmful series of compounds named fumonisins. Plant and fungal oxylipins play a crucial role in determining the outcome of the interaction between the pathogen and its host. Moreover, oxylipins are factors able to modulate the secondary metabolism in fungi. To uncover the existence of the relationship between oxylipin production and fumonisin synthesis in F. verticillioides , we analysed some molecular and physiological parameters, such as the expression of genes whose products are related to oxylipin synthesis (i.e. lipoxygenase, diol synthases and fatty acid oxidase), the oxylipin profile of both cracked maize and the pathogen by using a lipidomic approach (i.e. combining LC-TOF and LC-MS/MS approaches with a robust statistical analysis) and the synthesis of fumonisin B 1 . The results suggested a close relationship between the modification of the pathogen oxylipin profile with the fumonisin synthesis. Notably, a modification of the oxylipin profile of the pathogen during its growth on cracked maize can be demonstrated. The switch in oxylipin synthesis could indicate that the ‘presence’ of maize determinants (e.g. plant cell wall fragments and/or lipids) was able to promote the modification of the pathogen lifestyle, also by adapting the secondary metabolism, notably fumonisin synthesis.
Vitiligo is characterized by the progressive disappearance of pigment cells from skin and hair follicle. Several in vitro and in vivo studies show evidence of an altered redox status, suggesting that loss of cellular redox equilibrium might be the pathogenic mechanism in vitiligo. However, despite the numerous data supporting a pathogenic role of oxidative stress, there is still no consensus explanation underlying the oxidative stress-driven disappear of melanocytes from the epidermis. In this study, in vitro characterization of melanocytes cultures from non-lesional vitiligo skin revealed at the cellular level aberrant function of signal transduction pathways common with neurodegenerative diseases including modification of lipid metabolism, hyperactivation of mitogen-activated protein kinase (MAPK) and cAMP response element-binding protein (CREB), constitutive p53-dependent stress signal transduction cascades, and enhanced sensibility to pro-apoptotic stimuli. Notably, these long-term effects of subcytotoxic oxidative stress are also biomarkers of pre-senescent cellular phenotype. Consistent with this, vitiligo cells showed a significant increase in p16 that did not correlate with the chronological age of the donor. Moreover, vitiligo melanocytes produced many biologically active proteins among the senescence-associated secretory phenotype (SAPS), such as interleukin-6 (IL-6), matrix metallo proteinase-3 (MMP3), cyclooxygenase-2 (Cox-2), insulin-like growth factor-binding protein-3 and 7 (IGFBP3, IGFBP7). Together, these data argue for a complicated pathophysiologic puzzle underlying melanocytes degeneration resembling, from the biological point of view, neurodegenerative diseases. Our results suggest new possible targets for intervention that in combination with current therapies could correct melanocytes intrinsic defects.
Fusarium verticillioides causes multiple diseases of Zea mays (maize) including ear and seedling rots, contaminates seeds and seed products worldwide with toxic chemicals called fumonisins. The role of fumonisins in disease is unclear because, although they are not required for ear rot, they are required for seedling diseases. Disease symptoms may be due to the ability of fumonisins to inhibit ceramide synthase activity, the expected cause of lipids (fatty acids, oxylipins, and sphingolipids) alteration in infected plants. In this study, we explored the impact of fumonisins on fatty acid, oxylipin, and sphingolipid levels in planta and how these changes affect F. verticillioides growth in maize. The identity and levels of principal fatty acids, oxylipins, and over 50 sphingolipids were evaluated by chromatography followed by mass spectrometry in maize infected with an F. verticillioides fumonisin-producing wild-type strain and a fumonisin-deficient mutant, after different periods of growth. Plant hormones associated with defense responses, i.e., salicylic and jasmonic acid, were also evaluated. We suggest that fumonisins produced by F. verticillioides alter maize lipid metabolism, which help switch fungal growth from a relatively harmless endophyte to a destructive necrotroph.
We have discovered a new α-melanocyte stimulating hormone (α-MSH)/peroxisome proliferator activated receptor-γ (PPAR-γ) connection in B16-F10 cells. Both PPAR-γ up-regulation and its induction as an active transcription factor were observed in response to α-MSH. The α-MSH/PPAR-γ connection influenced both pigmentation and proliferation. The forskolin-stimulated cAMP/PKA pathway was not able to induce either PPAR-γ translocation into the nucleus or PPAR-γ transcriptional activity. As the melanocortin-1 receptor, the specific receptor for the α-MSH, is a G-protein coupled receptor, we wondered whether the phosphatidylinositol [PI(4,5)P(2) /PLC(β) ] signal pathway was involved in mediating the α-MSH-dependent PPAR-γ activation. Employing inhibitors of PI(4,5)P(2) /PLC(β) pathway, the results of our experiments suggested that this pathway was promoted by α-MSH and that α-MSH played a role in mediating PPAR-γ activation. We have demonstrated, for the first time, that α-MSH induces the PI(4,5)P(2) /PLC(β) pathway, through analysis of the basic steps of the pathway. The α-MSH effect on PPAR-γ was independent of animal species and was not correlated with the physio-pathological status.
The skin surface lipids (SSL) result from the blending of sebaceous and epidermal lipids, which derive from the sebaceous gland (SG) secretion and the permeability barrier of the stratum corneum (SC), respectively. In humans, the composition of the SSL is distinctive of the anatomical distribution of the SG. Thus, the abundance of sebum biomarkers is consistent with the density of the SG. Limited evidence on the influence that the SG exerts on the SC lipidome is available. We explored the differential amounts of sebaceous and epidermal lipids in areas at different SG density with lipidomics approaches. SC was sampled with adhesive patches from forearm, chest, and forehead of 10 healthy adults (8F, 2M) after mechanical removal of sebum with absorbing paper. Lipid extracts of SC were analysed by HPLC/(-)ESI-TOF-MS. In the untargeted approach, the naïve molecular features extraction algorithm was used to extract meaningful entities. Aligned and normalized data were evaluated by univariate and multivariate statistics. Quantitative analysis of free fatty acids (FFA) and cholesterol sulfate (CHS) was performed by targeted HPLC/(-)ESI-TOF-MS, whereas cholesterol and squalene were quantified by GC-MS. Untargeted approaches demonstrated that the relative abundance of numerous lipid species was distinctive of SC depending upon the different SG density. The discriminating species included FFA, CHS, and ceramides. Targeted analyses confirmed that sebaceous FFA and epidermal FFA were increased and decreased, respectively, in areas at high SG density. CHS and squalene, which are biomarkers of epidermal and sebaceous lipid matrices, respectively, were both significantly higher in areas at elevated SG density. Overall, results indicated that the SG secretion intervenes in shaping the lipid composition of the epidermal permeability barrier.
In sSome filamentous fungi, the pathways related to the oxidative stress and oxylipins production are involved both in the process of host-recognition of the host that and in the pathogenic phase. In fact, recent studies have shown that the production of oxylipins in filamentous fungi, yeasts and chromists is also related to the development of the organism itself and to mechanisms of communication with the host at the cellular level. The oxylipins, also involved produced in by the host during defense reactions, are able to induce sporulation and to modulate regulate the biosynthesis of mycotoxins in numerous several pathogenic fungi, apparently replacing the endogenous ones. In A. flavus, the oxylipins play a crucial role as signals for the regulation regulatingof the biosynthesis of aflatoxins, the conidiogenesis and the formation of sclerotia.To investigate the involvement of the an oxylipins based cross-talk into Z. mays and A. flavus interaction, we analyzed the oxylipins profile of the wild type strain and of three mutants of A. flavus that are deleted at the Aflox1 gene level also during maize kernel invasion; Aflox1 encodes for a manganese lipoxygenase.A lipidomic approach has been addressed through the use of LC-ToF-MS, followed by a statistical analysis of the principal components (PCA). The results showed the existence of a difference between the oxylipins profile generated by the WT and the mutants onto challenged maize. In relation to this, aflatoxin synthesis which is largely hampered in vitro, is intriguingly restored. These results highlight the important role of maize oxylipin in driving secondary metabolism in A. flavus.