The mining industry is facing emerging challenges as a result of the increase in energy consumption and environmental demands. These facts have promoted the use of renewable energy sources, such as wind, geothermal and, mainly, solar energy. This paper discusses the role of solar energy (UV-VIS-NIR) in leaching processes, evaluating its potential application in metal extraction from sulfide minerals, based on photochemical mechanisms that promote the regeneration of ferric iron or the so called ferrous iron cycling. The present paper discusses the possibility that ultraviolet, visible light and near infrared irradiation (e.g., sunlight provided) can assist the leaching processes in two main ways: by the oxidation of sulfide minerals through in-situ generated Fenton-like reactions, and by the photochemical activation of semiconductor minerals that contain transition metals (Fe, Cu, and Cr, among others). Thus, this paper provides theoretical support to move towards the future application of photoleaching, which consist of a leaching process assisted by UV, VIS, and NIR irradiation. This technology can be considered a promising mineral processing route, using direct photochemical solar energy that can reduce the energy consumption (electricity, fuels) and the environmental impact, opening an opportunity for an alternative method of metal extraction from sulfide ores.
The prediction of band edge potentials in photocatalytic materials is an important but challenging task. In contrast, the bandgap can be easily determined through absorption spectra. Here, two simple theoretical approaches based on the electron negativity and work function of each constituent atom have been used to obtain the band edge potentials in semiconducting metallic oxides and sulfides with respect to an absolute scale (eV) and an electrochemical scale (V). This study was focused on iron and copper sulfides due to the lack of information referred to these semiconductors. Titania p25 was used as a reference semiconductor to validate the calculation procedures. The production of key chemical species such as reactive oxygen and sulfur species (ROS and RSS) have been predicted and experimentally determined by electron paramagnetic resonance spectroscopy (EPR).
This paper review presents a comparison between conventional leaching and advanced photochemical leaching processes and their potential for use in chalcopyrite leaching. Likewise, it presents an analysis of the differences between the advanced leaching processes, photoleaching and radical-leaching, indicating that the photochemical mechanisms (photooxidation/photoreduction and generation of radical oxygen species (ROS) and radical sulfur species (RSS)) would improve the oxidative dissolution of chalcopyrite, taking advantage of the high oxidizing power of free radicals. Initial experimental results of solar-assisted radical-leaching on chalcopyrite are presented, demonstrating that sulfate radicals (SO4−) allow copper to be leached at a rate 4.7 times higher than in the absence of radicals and sunlight. With these results, a radical-leaching process is presented for the first time, with a perspective toward the future development of a new hydrometallurgical route: solar-assisted radical-leaching.