ABSTRACT BACKGROUND The Allen Institute recently built a set of high-throughput experimental pipelines to collect comprehensive in vivo surveys of physiological activity in the visual cortex of awake, head-fixed mice. Developing these large-scale, industrial-like pipelines posed many scientific, operational, and engineering challenges. NEW METHOD Our strategies for creating a cross-platform reference space to which all pipeline datasets were mapped required development of 1) a robust headframe, 2) a reproducible clamping system, and 3) data-collection systems that are built, and maintained, around precise alignment with a reference artifact. RESULTS When paired with our pipeline clamping system, our headframe exceeded deflection and reproducibility requirements. By leveraging our headframe and clamping system we were able to create a cross-platform reference space to which multi-modal imaging datasets could be mapped. COMPARISON WITH EXISTING METHODS Together, the Allen Brain Observatory headframe, surgical tooling, clamping system, and system registration strategy create a unique system for collecting large amounts of standardized in vivo datasets over long periods of time. Moreover, the integrated approach to cross-platform registration allows for multi-modal datasets to be collected within a shared reference space. CONCLUSIONS Here we report the engineering strategies that we implemented when creating the Allen Brain Observatory physiology pipelines. All of the documentation related to headframe, surgical tooling, and clamp design has been made freely available and can be readily manufactured or procured. The engineering strategy, or components of the strategy, described in this report can be tailored and applied by external researchers to improve data standardization and stability.
The detection of novel stimuli is critical to learn and survive in a dynamic environment. Though novel stimuli powerfully affect brain activity, their impact on specific cell types and circuits is not well understood. Disinhibition is one candidate mechanism for novelty-induced enhancements in activity. Here we characterize the impact of stimulus novelty on disinhibitory circuit components using longitudinal 2-photon calcium imaging of Vip, Sst, and excitatory populations in the mouse visual cortex. Mice learn a behavioral task with stimuli that become highly familiar, then are tested on both familiar and novel stimuli. Mice consistently perform the task with novel stimuli, yet responses to stimulus presentations and stimulus omissions are dramatically altered. Further, we find that novelty modifies coding of visual as well as behavioral and task information. At the population level, the direction of these changes is consistent with engagement of the Vip-Sst disinhibitory circuit. At the single cell level, we identify separate clusters of Vip, Sst, and excitatory cells with unique patterns of novelty-induced coding changes. This study and the accompanying open-access dataset reveals the impact of novelty on sensory and behavioral representations in visual cortical circuits and establishes novelty as a key driver of cellular functional diversity.
Abstract To understand the neural basis of behavior, it is essential to measure spiking dynamics across many interacting brain regions. While new technologies, such as Neuropixels probes, facilitate multi-regional recordings, significant surgical and procedural hurdles remain for these experiments to achieve their full potential. Here, we describe a novel 3D-printed cranial-replacement implant (SHIELD) enabling electrophysiological recordings from distributed areas of the mouse brain. This skull-shaped implant is designed with customizable insertion holes, allowing dozens of cortical and subcortical structures to be recorded in a single mouse using repeated multi-probe insertions over many days. We demonstrate the procedure’s high success rate, biocompatibility, lack of adverse effects on behavior, and compatibility with imaging and optogenetics. To showcase the scientific utility of the SHIELD implant, we use multi-probe recordings to reveal novel insights into how alpha rhythms organize spiking activity across visual and sensorimotor networks. Overall, this method enables powerful large-scale electrophysiological measurements for the study of distributed brain computation.
The Allen Institute recently built a set of high-throughput experimental pipelines to collect comprehensive in vivo surveys of physiological activity in the visual cortex of awake, head-fixed mice. Developing these large-scale, industrial-like pipelines posed many scientific, operational, and engineering challenges. Our strategies for creating a cross-platform reference space to which all pipeline datasets were mapped required development of 1) a robust headframe, 2) a reproducible clamping system, and 3) data-collection systems that are built, and maintained, around precise alignment with a reference artifact. When paired with our pipeline clamping system, our headframe exceeded deflection and reproducibility requirements. By leveraging our headframe and clamping system we were able to create a cross-platform reference space to which multi-modal imaging datasets could be mapped. Together, the Allen Brain Observatory headframe, surgical tooling, clamping system, and system registration strategy create a unique system for collecting large amounts of standardized in vivo datasets over long periods of time. Moreover, the integrated approach to cross-platform registration allows for multi-modal datasets to be collected within a shared reference space. Here we report the engineering strategies that we implemented when creating the Allen Brain Observatory physiology pipelines. All of the documentation related to headframe, surgical tooling, and clamp design has been made freely available and can be readily manufactured or procured. The engineering strategy, or components of the strategy, described in this report can be tailored and applied by external researchers to improve data standardization and stability.
Withdrawal Statement This manuscript has been withdrawn because it was posted without the consent of all authors. Therefore, this work should not be cited as reference for the project. If you have any questions, please contact the corresponding author.