A 51 kDa fusion protein incorporating the N-methyltransferase domain of the multienzyme enniatin synthetase from Fusarium scirpi was expressed in Saccharomyces cerevisiae. The protein was purified and found to bind S-adenosyl methionine (AdoMet) as demonstrated by cross-linking experiments with (14)C-methyl-AdoMet under UV irradiation. Cofactor binding at equilibrium conditions was followed by saturation transfer difference (STD) NMR spectroscopy, and the native conformation of the methyltransferase was assigned. STD NMR spectroscopy yielded significant signals for H(2) and H(8) of the adenine moiety, H(1') of D-ribose, and S-CH(3) group of AdoMet. Methyl group transfer catalyzed by the enzyme was demonstrated by using aminoacyl-N-acetylcysteamine thioesters (aminoacyl-SNACs) of L-Val, L-Ile, and L-Leu, which mimic the natural substrate amino acids of enniatin synthetase presented by the enzyme bound 4'-phosphopantetheine arm. In these experiments the enzyme was incubated in the presence of the corresponding aminoacyl-SNAC and (14)C-methyl-AdoMet for various lengths of time, for up to 30 min. N-[(14)C-Methyl]-aminoacyl-SNAC products were extracted with EtOAc and separated by TLC. Acid hydrolysis of the isolated labeled compounds yielded the corresponding N-[(14)C-methyl] amino acids. Further proof for the formation of N-(14)C-methyl-aminoacyl-SNACs came from MALDI-TOF mass spectrometry which yielded 23 212 Da for N-methyl-valyl-SNAC, accompanied by the expected postsource decay (PSD) pattern. Interestingly, L-Phe, which is not a substrate amino acid of enniatin synthetase, also proved to be a methyl group acceptor. D-Val was not accepted as a substrate; this indicates selectivity for the L isomer.
Summary Normal cellular function requires a rate of ATP production sufficient to meet demand. In most neurodegenerative diseases (including Amyotrophic Lateral Sclerosis, ALS), mitochondrial dysfunction is postulated raising the possibility of impaired ATP production and a need for compensatory maneuvers to sustain the ATP production/demand balance. We find in our rodent models of familial ALS (fALS), impairment in neuronal glycolytic flux with maintained or enhanced activity of the citric acid cycle. This rewiring of metabolism is associated with normal ATP levels and redox status, supporting the notion that mitochondrial function is not compromised in neurons expressing fALS genes. Genetic loss-of-function manipulation of individual steps in the glycolysis and the pentose phosphate pathway blunt the negative phenotypes seen in various fALS models. We propose that neurons adjust fuel utilization in the setting of neurodegenerative disease-associated mitochondrial dysfunction in a baleful manner and targeting this process can be healthful.
Assemblies of huntingtin (HTT) fragments with expanded polyglutamine (polyQ) tracts are a pathological hallmark of Huntington's disease (HD). The molecular mechanisms by which these structures are formed and cause neuronal dysfunction and toxicity are poorly understood. Here, we utilized available gene expression data sets of selected brain regions of HD patients and controls for systematic interaction network filtering in order to predict disease-relevant, brain region-specific HTT interaction partners. Starting from a large protein-protein interaction (PPI) data set, a step-by-step computational filtering strategy facilitated the generation of a focused PPI network that directly or indirectly connects 13 proteins potentially dysregulated in HD with the disease protein HTT. This network enabled the discovery of the neuron-specific protein CRMP1 that targets aggregation-prone, N-terminal HTT fragments and suppresses their spontaneous self-assembly into proteotoxic structures in various models of HD. Experimental validation indicates that our network filtering procedure provides a simple but powerful strategy to identify disease-relevant proteins that influence misfolding and aggregation of polyQ disease proteins.
ABSTRACT Neuroinflammation is a central process in the pathogenesis of several neurodegenerative diseases such as Alzheimer’s disease (AD), and there are active efforts to target pathways involved in neuroinflammation for molecular biomarker discovery and therapeutic development in neurodegenerative diseases. It was also proposed that there may be an infectious etiology in AD that is associated with viruses such as herpes simplex virus (HSV-1) and influenza A virus (IAV), leading to neuroinflammation-induced AD pathogenesis or disease progression. We sought to develop high-throughput, quantitative molecular biomarker assays using dissociated cells from human cerebral organoids (dcOrgs), that can used for screening compounds to reverse AD-associated neuroinflammation. We found that HSV-1 infection, but not IAV infection, in dcOrgs led to increased intracellular Aβ42 and phosphorylated Tau-Thr212 (pTau-212) expression, lower ratios of secreted Aβ42/40, as well as neuronal loss, and increased proportions of astrocytes and microglia, which are hallmarks of AD. Among the glia cell-type markers, Iba1 (microglia) and GFAP (astrocyte) expression were most strongly correlated with HSV-1 expression, which further supported that these biomarkers are perturbed by glia-mediated neuroinflammation. By performing large-scale RNA sequencing, we observed that differentially expressed transcripts in HSV-1 infected dcOrgs were specifically enriched for AD-associated GWAS genes, but not for genes associated with other common neurodegenerative, neuropsychiatric or autoimmune diseases. Immediate treatment of HSV-1 infected dcOrgs with anti-herpetic drug acyclovir (ACV) rescued most of the cellular and transcriptomic biomarkers in a dosage-dependent manner, indicating that it is possible to use our high-throughput platform to identify compounds or target genes that can reverse these neuroinflammation-induced biomarkers associated with AD.
HIP14 is the most highly conserved of 23 human palmitoyl acyltransferases (PATs) that catalyze the post-translational addition of palmitate to proteins, including huntingtin (HTT). HIP14 is dysfunctional in the presence of mutant HTT (mHTT), the causative gene for Huntington disease (HD), and we hypothesize that reduced palmitoylation of HTT and other HIP14 substrates contributes to the pathogenesis of the disease. Here we describe the yeast two-hybrid (Y2H) interactors of HIP14 in the first comprehensive study of interactors of a mammalian PAT. Unexpectedly, we discovered a highly significant overlap between HIP14 interactors and 370 published interactors of HTT, 4-fold greater than for control proteins (P = 8 × 10−5). Nearly half of the 36 shared interactors are already implicated in HD, supporting a direct link between HIP14 and the disease. The HIP14 Y2H interaction set is significantly enriched for palmitoylated proteins that are candidate substrates. We confirmed that three of them, GPM6A, and the Sprouty domain-containing proteins SPRED1 and SPRED3, are indeed palmitoylated by HIP14; the first enzyme known to palmitoylate these proteins. These novel substrates functions might be affected by reduced palmitoylation in HD. We also show that the vesicular cargo adapter optineurin, an established HTT-binding protein, co-immunoprecipitates with HIP14 but is not palmitoylated. mHTT leads to mislocalization of optineurin and aberrant cargo trafficking. Therefore, it is possible that optineurin regulates trafficking of HIP14 to its substrates. Taken together, our data raise the possibility that defective palmitoylation by HIP14 might be an important mechanism that contributes to the pathogenesis of HD.