We found an effective catalytic consortium capable of converting glucose to 5-hydroxymethylfurfural (HMF) in high yields (50%). The reaction consists of a consortium of a Lewis acid (NbCl5) and a Brønsted acid (p-sulfonic acid calix[4]arene (CX4SO3H)), in a microwave-assisted reactor and in a biphasic system. The best result for the conversion of glucose to HMF (yield of 50%) was obtained with CX4SO3H/NbCl5 (5 wt%/7.5 wt%), using water/NaCl and MIBK (1:3), at 150 °C, for 17.5 min. The consortium catalyst recycling was tested, allowing its reuse for up to seven times, while maintaining the HMF yield constant. Additionally, it proposed a catalytic cycle by converting glucose to HMF, highlighting the following two key points: the isomerization of glucose into fructose, in the presence of Lewis acid (NbCl5), and the conversion of fructose into HMF, in the presence of CX4SO3H/NbCl5. A mechanism for the conversion of glucose to HMF was proposed and validated.
5-ethoxymethylfurfural (EMF) is a potential biofuel that can be obtained from the etherification of 5-hydroxymethylfurfural. In this work, a green methodology was developed to produce this product through a one-pot tandem reaction, starting directly from fructose, eliminating unnecessary process steps and the isolation of intermediates. For this, heating by microwave irradiation and p-sulfonic acid calix[4]arene (CX4SO3H) as organocatalyst were used. EMF was obtained in 88% yield by heating a mixture of ethanol, fructose and CX4SO3H (1.0 mol%) at 140 °C for 20 min. In addition, we can highlight other advantages of the developed methodology, such as (i) use of non-toxic catalyst, (ii) short reaction time, (iii) efficient heating system, (iv) metal-free process, (v) formation of two π bonds C-C and one C-O in sequence, (vi) water as a sole waste and (vii) process according to green chemistry.
The fructose was subjected to a dehydration reaction to produce 5-hydroxymethylfurfural using a deep eutectic solvent composed of choline chloride, fructose, water as the third component of the mixture and p -sulfonic acid calix[4]arene as an organocatalyst.
Diante das previsões de esgotamento dos recursos fósseis e os problemas ambientais causados pela queima de combustíveis, é cada vez mais urgente substituir esses materiais por matérias- primas de fonte renovável. Diante disso, a biomassa é apresentada como a melhor solução, uma vez que ela é uma fonte sustentável, limpa e abundante para obtenção de energia e de carbono orgânico. Para isso, foi estabelecida a biorrefinaria, que é uma unidade industrial com finalidade de transformar biomassa renovável, e materiais advindos dela, em biocombustíveis, plataformas, insumos químicos e energia. Essa alternativa, tem movido inúmeras pesquisas na área acadêmica e industrial. Porém, para isso é fundamental desenvolver metodologias envolvendo catálise, uma vez que os catalisadores tornam as transformações mais seletivas, rápidas e eficazes. Nesse contexto, os organocatalisadores derivados dos calix[n]arenos chamam atenção, uma vez que foram pouco explorados e tem inúmeras qualidades, como ser reciclável, não ser corrosivo, ser de baixa volatilidade e apresentar baixa toxicidade. Dessa forma, este trabalho objetivou produzir a plataforma química 5-hidroximetilfurfural (HMF), potenciais biocombustíveis, aditivos de combustíveis e insumos químicos a partir de moléculas modelos derivadas da biomassa, empregando o ácido p-sulfônico calix[4]areno como catalisador em todas transformações químicas. Foi possível converter a frutose em HMF empregando dois sistemas distintos – um sistema bifásico constituído por solução aquosa saturada com NaCl e acetato de etila, e outro constituído por solvente eutético profundo e acetato de etila – com 74% e 90% de rendimento, respectivamente. Outra vertente do trabalho foi a conversão em tandem da frutose em 5-etoximetilfurfural, com 88% de rendimento. Além disso, foi desenvolvida uma metodologia verde para a síntese de dez ésteres levulínicos, obtidos em rendimentos que variaram de 13 a 99%. Por fim, foram sintetizados acetais derivados do glicerol, como potenciais aditivos de combustíveis, com rendimentos totais entre 6 e 99%. Em suma, foi possível desenvolver metodologias verdes, sustentáveis e rápidas, para síntese de produtos para química fina, com bons rendimentos e que trazem oportunidades para biorrefinaria. Palavras-chave: Organocatálise. 5-hidroximetilfurfural. Calixarenos. Frutose. Ácido levulínico. Glicerol. Química verde.
Abstract In this paper, we have described a novel route to produce 5-hydroxymethylfurfural (HMF), a valuable platform-molecule obtained from biomass, using transition metal-exchanged Keggin heteropolyacid salts as catalysts, in microwave-assisted reactions carried out in a water-ethyl acetate biphasic system. To avoid the use of homogenous Brønsted acid catalysts, which are corrosive and difficult to be reused, we have exchanged the protons of the Keggin heteropolyacids by transition metal cations. These salts were evaluated in the fructose dehydration, being the Cu 3/2 PW 12 O 40 the most active and selective catalyst, achieving 81 % of HMF yield, after 15 min reaction at 413 K under microwave irradiation (MWI). The effects of metal cation, anion, and heteropolyanion present in the catalyst were evaluated. The greatest efficiency of Cu 3/2 PW 12 O 40 was attributed to its high Lewis acidity strength, which allows that it coordinate with water molecules, consequently generating H 3 O + ions in the reaction medium. Even though the catalyst has been water-soluble, it was easily reused removing the extracting phase, and adding a new load of the substrate to the remaining aqueous phase. This way, it was successfully reused without loss activity.
Acetals formed from glycerol find applications in several areas, their use as fuel additives being the most promising, since it results in total integration in the biodiesel chain and eliminates one of the obstacles to its production.
We found an effective catalytic consortium capable of convertion glucose to 5-hydroxymethylfurfural (HMF) in high yields (50%). The reaction consist of a consortion of a Lewis acid (NbCl5) and Bronsted acid (p-sulfonic acid cali[4]arene (CX4SO3H) in a microwave-assisted reactor and in a biphasic system. The best result for the conversion of glucose to HMF (yield of 50%) was obtained with CX4SO3H/NbCl5 (5 wt%/ 7.5 wt%), using water/NaCl and MIBK (1:3), at 150 °C, 17.5 min. The consortium catalyst recycling was tested, alowing its reuse for up to 7 times, while maintaining the HMF yield constant. Additionally, is proposed a catalytic cycle by converting glucose to HMF, highlighting two key points: the isomerization of glucose into fructose, in the presence of Lewis acid (NbCl5), and the conversion of fructose into HMF, in the presence of CX4SO3H/NbCl5. A mechanism for the converting glucose to HMF involving was proposed and validated.