Postnatal ad libitum caloric intake superimposed on intrauterine growth restriction (IUGR) is associated with adult-onset obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). We hypothesized that this paradigm of prenatal nutrient deprivation–induced programming can be reversed with the introduction of early postnatal calorie restriction. Ten-month-old male rats exposed to either prenatal nutrient restriction with ad libitum postnatal intake (IUGR), pre- and postnatal nutrient restriction (IPGR), or postnatal nutrient restriction limited to the suckling phase (50% from postnatal [PN]1 to PN21) (PNGR) were compared with age-matched controls (CON). Visceral adiposity, metabolic profile, and insulin sensitivity by hyperinsulinemic-euglycemic clamps were examined. The 10-month-old male IUGR group had a 1.5- to 2.0-fold increase in subcutaneous and visceral fat (P < 0.0002) while remaining euglycemic, insulin sensitive, inactive, and exhibiting metabolic inflexibility (Vo2) versus CON. The IPGR group remained lean, euglycemic, insulin sensitive, and active while maintaining metabolic flexibility. The PNGR group was insulin sensitive, similar to IPGR, but less active while maintaining metabolic flexibility. We conclude that IUGR resulted in obesity without insulin resistance and energy metabolic perturbations prior to development of glucose intolerance and T2DM. Postnatal nutrient restriction superimposed on IUGR was protective, restoring metabolic normalcy to a lean and active phenotype.
Perturbed maternal diet and prenatal exposure to air pollution (AP) affect the fetal brain, predisposing to postnatal neurobehavioral disorders. Glucose transporters (GLUTs) are key in fueling neurotransmission; deficiency of the neuronal isoform GLUT3 culminates in autism spectrum disorders. Along with the different neurotransmitters, serotonin (5-HT) and oxytocin (OXT) are critical for the development of neural connectivity. Serotonin transporter (SERT) modulates synaptic 5-HT levels, while the OXT receptor (OXTR) mediates OXT action. We hypothesized that perturbed brain GLUT1/GLUT3 regulated 5-HT-SERT imbalance, which serves as a contributing factor to postnatal neuropsychiatric phenotypes, with OXT/OXTR providing a counterbalance. Employing maternal diet restriction (intrauterine growth restriction [IUGR]), high-fat (HF) dietary modifications, and prenatal exposure to simulated AP, fetal (E19) murine brain 5-HT was assessed by ELISA with SERT and OXTR being localized by immunohistochemistry and measured by quantitative Western blot analysis. IUGR with lower head weights led to a 48% reduction in male and female fetal brain GLUT3 with no change in GLUT1, when compared to age- and sex-matched controls, with no significant change in OXTR. In addition, a ∼50% (<i>p</i> = 0.005) decrease in 5-HT and SERT concentrations was displayed in fetal IUGR brains. In contrast, despite emergence of microcephaly, exposure to a maternal HF diet or AP caused no significant changes. We conclude that in the IUGR during fetal brain development, reduced GLUT3 is associated with an imbalanced 5-HT-SERT axis. We speculate that these early changes may set the stage for altering the 5HT-SERT neural axis with postnatal emergence of associated neurodevelopmental disorders.
Glucose transporter isoform-3 (GLUT3) is the trophoblastic facilitative glucose transporter. To investigate the role of this isoform in embryonic development, we created a novel GLUT3-null mouse and observed arrested early embryonic development and loss at neurulation stage when both alleles were mutated. This loss occurred despite the presence of other related isoforms, particularly GLUT1. In contrast, when a single allele was mutated, despite increased embryonic cell apoptosis, adaptive changes in the subcellular localization of GLUT3 and GLUT1 in the preimplantation embryo led to postimplantation survival. This survival was compromised by decreased GLUT3-mediated transplacental glucose transport, causing late-gestation fetal growth restriction. This yielded young male and female adults demonstrating catch-up growth, with normal basal glucose, insulin, insulin-like growth factor-I and IGF-binding protein-3 concentrations, fat and lean mass, and glucose and insulin tolerance. We conclude that GLUT3 mutations cause a gene dose-dependent early pregnancy loss or late-gestation fetal growth restriction despite the presence of embryonic and placental GLUT1 and a compensatory increase in system A amino acid placental transport. This critical life-sustaining functional role for GLUT3 in embryonic development provides the basis for investigating the existence of human GLUT3 mutations with similar consequences during early pregnancy.
Intrauterine growth restriction leads to the development of adult onset obesity/metabolic syndrome, diabetes mellitus, cardiovascular disease, hypertension, stroke, dyslipidemia, and non-alcoholic fatty liver disease/steatohepatitis. Continued postnatal growth restriction has been shown to ameliorate many of these sequelae. To further our understanding of the mechanism of how intrauterine and early postnatal growth affects adult health we have employed Affymetrix microarray-based expression profiling to characterize hepatic gene expression of male offspring in a rat model of maternal nutrient restriction in early and late life. At day 21 of life (p21) combined intrauterine and postnatal calorie restriction treatment led to expression changes in circadian, metabolic, and insulin-like growth factor genes as part of a larger transcriptional response that encompasses 144 genes. Independent and controlled experiments at p21 confirm the early life circadian, metabolic, and growth factor perturbations. In contrast to the p21 transcriptional response, at day 450 of life (d450) only seven genes, largely uncharacterized, were differentially expressed. This lack of a transcriptional response identifies non-transcriptional mechanisms mediating the adult sequelae of intrauterine growth restriction. Independent experiments at d450 identify a circadian defect as well as validate expression changes to four of the genes identified by the microarray screen which have a novel association with growth restriction. Emerging from this rich dataset is a portrait of how the liver responds to growth restriction through circadian dysregulation, energy/substrate management, and growth factor modulation.
We have shown in vitro a hypoxia-induced time-dependent increase in facilitative glucose transporter isoform 3 (GLUT3) expression in N2A murine neuroblasts. This increase in GLUT3 expression is partially reliant on a transcriptional increase noted in actinomycin D and cycloheximide pretreatment experiments. Transient transfection assays in N2A neuroblasts using murine glut3-luciferase reporter constructs mapped the hypoxia-induced enhancer activities to -857- to -573-bp and -203- to -177-bp regions. Hypoxia-exposed N2A nuclear extracts demonstrated an increase in HIF-1α and p-Creb binding to HRE (-828 to -824 bp) and AP-1 (-187 to -180 bp) cis-elements, respectively, in electromobility shift and supershift assays, which was confirmed by chromatin immunoprecipitation assays. In addition, the interaction of CBP with Creb and HIF-1α and CREST with CBP in hypoxia was detected by coimmunoprecipitation. Furthermore, small interference (si)RNA targeting Creb in these cells decreased endogenous Creb concentrations that reduced by twofold hypoxia-induced glut3 gene transcription. Thus, in N2A neuroblasts, phosphorylated HIF-1α and Creb mediated the hypoxia-induced increase in glut3 transcription. Coactivation by the Ca⁺⁺-dependent CREST and CBP proteins may enhance cross-talk between p-Creb-AP-1 and HIF-1α/HRE of the glut3 gene. Collectively, these processes can facilitate an adaptive response to hypoxic energy depletion targeted at enhancing glucose transport and minimizing injury while fueling the proliferative potential of neuroblasts.
Fetal nutrient and growth restriction is associated with development of type 2 diabetes. Although the exact mechanisms responsible for this association remain debated, intrauterine and/or postnatal maldevelopment of β-cell mass has been proposed as a potential mechanism. To address this hypothesis, β-cell mass development and turnover was assessed in rats exposed to either intrauterine and/or postnatal caloric/growth restriction. In total, four groups of male and female Sprague Dawley rats (n = 69) were developed and studied: 1) control rats, i.e. control mothers rearing control pups; 2) intrauterine calorically and growth-restricted rats, i.e. 50% prenatal calorically restricted pups cross-fostered to control mothers; 3) postnatal calorically and growth-restricted rats, i.e. 50% calorically restricted mothers rearing pups born to control mothers; and 4) prenatal and postnatal calorically and growth restricted rats, i.e. 50% calorically restricted mothers rearing intrauterine 50% calorically restricted pups. Intrauterine growth restriction resulted in approximately 45% reduction of postnatal β-cell fractional area and mass characterized by reduced rate of β-cell replication and decreased evidence of neogenesis. In contrast, β-cell fractional area and weight-adjusted β-cell mass in postnatal growth restriction was approximately 30% higher than in control rats. Rats exposed to both intrauterine and postnatal caloric and growth restriction demonstrated approximately 80% decrease in β-cell mass, reduction in β-cell replication, and decreased evidence of neogenesis compared with control. Neither intrauterine nor postnatal caloric restriction significantly affected the rate of β-cell apoptosis. These data support the hypothesis that intrauterine maldevelopment of β-cell mass may predict the increased risk of type 2 diabetes in adult life.
Associations between exponential childhood growth superimposed on low birth weight and adult onset cardiovascular disease with glucose intolerance/type 2 diabetes mellitus exist in epidemiological investigations. To determine the metabolic adaptations that guard against myocardial failure on subsequent exposure to hypoxia, we compared with controls (CON), the effect of intrauterine (IUGR), postnatal (PNGR), and intrauterine and postnatal (IPGR) calorie and growth restriction ( n = 6/group) on myocardial macronutrient transporter (fatty acid and glucose) -mediated uptake in pregestational young female adult rat offspring. A higher myocardial FAT/CD36 protein expression in IUGR, PNGR, and IPGR, with higher FATP1 in IUGR, FATP6 in PNGR, FABP-c in PNGR and IPGR, and no change in GLUT4 of all groups was observed. These adaptive macronutrient transporter protein changes were associated with no change in myocardial [ 3 H]bromopalmitate accumulation but a diminution in 2-deoxy-[ 14 C]glucose uptake. Examination of the sarcolemmal subfraction revealed higher basal concentrations of FAT/CD36 in PNGR and FATP1 and GLUT4 in IUGR, PNGR, and IPGR vs. CON. Exogenous insulin uniformly further enhanced sarcolemmal association of these macronutrient transporter proteins above that of basal, with the exception of insulin resistance of FATP1 and GLUT4 in IUGR and FAT/CD36 in PNGR. The basal sarcolemmal macronutrient transporter adaptations proved protective against subsequent chronic hypoxic exposure (7 days) only in IUGR and PNGR, with notable deterioration in IPGR and CON of the echocardiographic ejection fraction. We conclude that the IUGR and PNGR pregestational adult female offspring displayed a resistance to insulin-induced translocation of FATP1, GLUT4, or FAT/CD36 to the myocardial sarcolemma due to preexistent higher basal concentrations. This basal adaptation of myocardial macronutrient transporters ensured adequate fatty acid uptake, thereby proving protective against chronic hypoxia-induced myocardial compromise.