Abstract The HMG-box protein Capicua (CIC) is an evolutionarily conserved transcriptional repressor with key functions in development and disease-associated processes. CIC binds DNA using an exclusive mechanism that requires both its HMG-box and a separate domain called C1, but how these domains cooperate to recognize specific DNA sequences is not known. Here we report the crystal structure of the human CIC HMG-box and C1 domains in complex with an 18-base-pair DNA oligomer containing a consensus octameric CIC binding site. We find that both protein domains adopt independent tri-helical structures that pack against opposite sides of the DNA helix. The C1 domain in particular folds into a helix-turn-helix (HTH) structure that resembles the FF phosphoprotein binding domain. It inserts into the major groove of the DNA and plays a direct role in enhancing both the affinity and sequence specificity of CIC DNA binding. Our results reveal a unique bipartite protein module, ensuring highly specific DNA recognition by CIC, and show how this mechanism is disrupted by cancer mutations affecting either the HMG-box or C1 domains.
Abstract Homeotic genes of Drosophila melanogaster encode transcription factors that specify segment identity by activating the appropriate set of target genes required to produce segment-specific characteristics. Advances in understanding target gene selection have been hampered by the lack of genes known to be directly regulated by the HOM-C proteins. Here we present evidence that the gene 1.28 is likely to be a direct target of Deformed in the maxillary segment. We identified a 664-bp Deformed Response Element (1.28 DRE) that directs maxillary-specific expression of a reporter gene in transgenic embryos. The 1.28 DRE contains in vitro binding sites for Deformed and DEAF-1. The Deformed binding sites do not have the consensus sequence for cooperative binding with the cofactor Extradenticle, and we do not detect cooperative binding to these sites, though we cannot rule out an independent role for Extradenticle. Removing the four Deformed binding sites renders the 1.28 DRE inactive in vivo, demonstrating that these sites are necessary for activation of this enhancer element, and supporting the proposition that 1.28 is activated by Deformed. We show that the DEAF-1 binding region is not required for enhancer function. Comparisons of the 1.28 DRE with other known Deformed-responsive enhancers indicate that there are multiple ways to construct Deformed Response Elements.
ABSTRACT The tumour suppressor, Lethal (2) giant larvae [Lgl; also known as L(2)gl], is an evolutionarily conserved protein that was discovered in the vinegar fly Drosophila, where its depletion results in tissue overgrowth and loss of cell polarity. Lgl links cell polarity and tissue growth through regulation of the Notch and the Hippo signalling pathways. Lgl regulates the Notch pathway by inhibiting V-ATPase activity via Vap33. How Lgl regulates the Hippo pathway was unclear. In this current study, we show that V-ATPase activity inhibits the Hippo pathway, whereas Vap33 acts to activate Hippo signalling. Vap33 physically and genetically interacts with the actin cytoskeletal regulators RtGEF (Pix) and Git, which also bind to the Hippo protein (Hpo) and are involved in the activation of the Hippo pathway. Additionally, we show that the ADP ribosylation factor Arf79F (Arf1), which is a Hpo interactor, is involved in the inhibition of the Hippo pathway. Altogether, our data suggest that Lgl acts via Vap33 to activate the Hippo pathway by a dual mechanism: (1) through interaction with RtGEF, Git and Arf79F, and (2) through interaction and inhibition of the V-ATPase, thereby controlling epithelial tissue growth.
We present a microscope that uses single source and single detector, and capable of imaging multiple features like brightfield+fluorescence, phase+fluorescence, and edge enhanced+fluorescence of the biological specimen without the need of image registration and fusion.