ABSTRACT Dual‐purpose durum ( Triticum turgidum L. subsp. durum ) wheat, having both good pasta and breadmaking quality, would be an advantage in the market. In this study, we evaluated the effects of genotype and varying HMW and LMW glutenin subunit composition on durum breadmaking quality. Genotypes included five near‐isogenic backgrounds that also differed by variability at the Glu‐D1d (HMW subunits 1Dx5+1Dy10), Glu‐B1 (presence or absence of subunit 1By8), and Glu‐B3 (LMWI or LMWII pattern) loci. Quality tests were conducted on genotypes grown at five North Dakota locations. Genotype had a stronger influence on free asparagine content than glutenin subunit composition. Genotypes carrying Glu‐D1d had higher glutenin content than lines that did not carry Glu‐D1d . Among Rugby translocation genotypes, lines carrying LMWI had higher gliadin content and better loaf volume than genotypes carrying LMWII. Absence of 1By8 produced major reductions in loaf volume in nontranslocation lines regardless of whether LMWI or LMWII was present. In contrast, the presence of Glu‐D1d compensated well for the absence of 1By8 regardless of which LMW pattern was present. The durum genotypes did not have loaf volumes equal to bread wheat cultivars, and results suggest that improved extensibility is needed to improve durum breadmaking quality.
Dual purpose durum (Triticum turgidum L. subsp. durum) wheat, having both good pasta and breadmaking quality, would be an advantage in the market. In this study, we evaluated the effects of genotype and varying HMW and LMW glutenin subunit composition on durum breadmaking quality. Genotypes included five near-isogenic backgrounds which also differed by variability at the Glu-D1d (HMW subunits 1Bx5+1By10), Glu-B1 (presence or absence of subunit 1By8), and Glu-B3 (LMWI or LMWII pattern) loci. Quality tests were conducted on genotypes grown at five North Dakota locations. Genotype had a stronger influence on free asparagine content than glutenin subunit composition. Genotypes carrying Glu-D1d had higher glutenin content than lines that did not carry Glu-D1d. Among Rugby translocation genotypes, lines carrying LMWI had higher gliadin content and better loaf volume than genotypes carrying LMWII. Absence of 1By8 produced major reductions in loaf volume in non-translocation lines regardless of whether LMWI or LMWII was present. In contrast, the presence of Glu-D1d compensated well for the absence of 1By8 regardless of which LMW pattern was present. The durum genotypes did not have loaf volumes equal to bread wheat cultivars, and results suggest that improved extensibility is needed to improve durum breadmaking quality.
ABSTRACT Breadmaking properties were determined for formulations that included durum, soft, and spring wheat flour, using a pound‐loaf sponge‐dough baking procedure. Up to 60% durum or soft wheat flour plus 10% spring wheat flour could be incorporated at the sponge stage for optimum dough‐handling properties. At remix, the dough stage required 30% spring wheat flour. Bread made with 100% spring wheat flour was used as a standard for comparison. Bread made with 60% durum flour exhibited internal crumb color that was slightly yellow. When storing pound bread loaves for 72 hr, crumb moisture content remained unchanged. Crumb firmness and enthalpy increased the most in bread made with 60% soft wheat flour. Crumb firmness increased the least in bread made with 100% spring wheat flour. Enthalpy changed the least in bread made with 60% durum flour. Crumb moisture content was significantly correlated with crumb firmness ( r = ‐0.82) and enthalpy ( r = ‐0.65). However, crumb moisture content was specific for each type of flour and a function of flour water absorption; therefore, these correlations should be interpreted with caution. Crumb firmness and enthalpy were significantly correlated ( r = 0.65). Ball‐milling flour resulted in an increase in water absorption of ≈2% and in crumb moisture content of ≈0.5% but had no effect on either crumb firmness or enthalpy.