Abstract Geophysics provides a multidimensional suite of investigative methods that are transforming our ability to see into the very fabric of the subsurface environment, and monitor the dynamics of its fluids and the biogeochemical reactions that occur within it. Here we document how geophysical methods have emerged as valuable tools for investigating shallow subsurface processes over the past two decades and offer a vision for future developments relevant to hydrology and also ecosystem science. The field of “hydrogeophysics” arose in the late 1990s, prompted, in part, by the wealth of studies on stochastic subsurface hydrology that argued for better field‐based investigative techniques. These new hydrogeophysical approaches benefited from the emergence of practical and robust data inversion techniques, in many cases with a view to quantify shallow subsurface heterogeneity and the associated dynamics of subsurface fluids. Furthermore, the need for quantitative characterization stimulated a wealth of new investigations into petrophysical relationships that link hydrologically relevant properties to measurable geophysical parameters. Development of time‐lapse approaches provided a new suite of tools for hydrological investigation, enhanced further with the realization that some geophysical properties may be sensitive to biogeochemical transformations in the subsurface environment, thus opening up the new field of “biogeophysics.” Early hydrogeophysical studies often concentrated on relatively small “plot‐scale” experiments. More recently, however, the translation to larger‐scale characterization has been the focus of a number of studies. Geophysical technologies continue to develop, driven, in part, by the increasing need to understand and quantify key processes controlling sustainable water resources and ecosystem services.
Abstract Thorough knowledge of root system functioning is essential to understand the feedback loops between plants, soil, and climate. In situ characterization of root systems is challenging due to the inaccessibility of roots and the complexity of root zone processes. Electrical methods have been proposed to overcome these difficulties. Electrical conduction and polarization occur in and around roots, but the mechanisms are not yet fully understood. We review the potential and limitations of low‐frequency electrical techniques for root zone investigation, discuss the mechanisms behind electrical conduction and polarization in the soil–root continuum, and address knowledge gaps. A range of electrical methods for root investigation is available. Reported methods using current injection in the plant stem to assess the extension of the root system lack robustness. Multi‐electrode measurements are increasingly used to quantify root zone processes through soil moisture changes. They often neglect the influence of root biomass on the electrical signal, probably because it is yet to be well understood. Recent research highlights the potential of frequency‐dependent impedance measurements. These methods target both surface and volumetric properties by activating and quantifying polarization mechanisms occurring at the root segment and cell scale at specific frequencies. The spectroscopic approach opens up a range of applications. Nevertheless, understanding electrical signatures at the field scale requires significant understanding of small‐scale polarization and conduction mechanisms. Improved mechanistic soil–root electrical models, validated with small‐scale electrical measurements on root systems, are necessary to make further progress in ramping up the precision and accuracy of multi‐electrode tomographic techniques for root zone investigation.
This is the electronic appendix to the publication C.Strobel, M. Doerrrich, E.-H. Stieff, J. A. Huisman, O.A. Cirpka, A. Mellage (2023): Organic matter matters - The imaginary conductivity of sediments rich in solid organic carbon (submitted)
[1] Soil water content is one of the key state variables in the soil-vegetation-atmosphere continuum due to its important role in the exchange of water and energy at the soil surface. A new promising method to measure integral soil water content at the field or small catchment scale is the cosmic-ray probe (CRP). Recent studies of CRP measurements have mainly presented results from test sites located in very dry areas and from agricultural fields with sandy soils. In this study, distributed continuous soil water content measurements from a wireless sensor network (SoilNet) were used to investigate the accuracy of CRP measurements for soil water content determination in a humid forest ecosystem. Such ecosystems are less favorable for CRP applications due to the presence of a litter layer. In addition, lattice water and carbohydrates of soil organic matter and belowground biomass reduce the effective sensor depth and thus were accounted for in the calibration of the CRP. The hydrogen located in the biomass decreased the level of neutron count rates and thus also decreased the sensitivity of the cosmic-ray probe, which in turn resulted in an increase of the measurement uncertainty. This uncertainty was compensated by using longer integration times (e.g., 24 h). For the Wustebach forest site, the cosmic-ray probe enabled the assessment of integral daily soil water content dynamics with a RMSE of about 0.03 cm3/cm3 without explicitly considering the litter layer. By including simulated water contents of the litter layer in the calibration, a better accuracy could be achieved.