OBJECTIVES: To assess the effect of incorporating bilateral abnormalities as detected by lung ultrasound (LUS) in the Kigali modification and the New Global definition of acute respiratory distress syndrome (ARDS) on the occurrence rate of ARDS. DESIGN: Post hoc analysis of a previously published prospective cohort study. SETTING: An academic mixed medical-surgical ICU. PATIENTS: The original study included critically ill adults with any opacity on chest radiography in whom subsequent LUS was performed. Patients with ARDS according to the Berlin definition, COVID-19 patients and patients with major thorax trauma were excluded. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: LUS was performed within 24 hours of chest radiography and the presence of unilateral and bilateral abnormalities on LUS and chest radiograph (opacities) was scored. Subsequently, the Kigali modification and the New Global definition of ARDS were applied by two independent researchers on the patients with newly found bilateral opacities. Of 120 patients, 116 were included in this post hoc analysis. Thirty-three patients had bilateral opacities on LUS and unilateral opacities on chest radiograph. Fourteen of these patients had ARDS according to the Kigali modification and 12 had ARDS according to the New Global definition. The detected LUS patterns were significantly different between patients with and without ARDS ( p = 0.004). An A-profile with a positive PosteroLateral Alveolar and/or Pleural Syndrome was most prevalent in patients without ARDS, whereas heterogeneous and mixed A, B, and C patterns were most prevalent in patients with ARDS. CONCLUSION: The addition of bilateral abnormalities as detected by LUS to the Kigali modification and the New Global definition increases the occurrence rate of the ARDS. The nomenclature for LUS needs to be better defined as LUS patterns differ between patients with and without ARDS. Incorporating well-defined LUS criteria can increase specificity and sensitivity of new ARDS definitions.
Current evidence on epidemiology and outcomes of invasively mechanically ventilated intensive care unit (ICU) patients is predominantly gathered in resource-rich settings. Patient casemix and patterns of critical illnesses, and probably also ventilation practices are likely to be different in resource-limited settings. We aim to investigate the epidemiological characteristics, ventilation practices and clinical outcomes of patients receiving mechanical ventilation in ICUs in Asia.PRoVENT-iMIC (study of PRactice of VENTilation in Middle-Income Countries) is an international multicentre observational study to be undertaken in approximately 60 ICUs in 11 Asian countries. Consecutive patients aged 18 years or older who are receiving invasive ventilation in participating ICUs during a predefined 28-day period are to be enrolled, with a daily follow-up of 7 days. The primary outcome is ventilatory management (including tidal volume expressed as mL/kg predicted body weight and positive end-expiratory pressure expressed as cm H2O) during the first 3 days of mechanical ventilation-compared between patients at no risk for acute respiratory distress syndrome (ARDS), patients at risk for ARDS and in patients with ARDS (in case the diagnosis of ARDS can be made on admission). Secondary outcomes include occurrence of pulmonary complications and all-cause ICU mortality.PRoVENT-iMIC will be the first international study that prospectively assesses ventilation practices, outcomes and epidemiology of invasively ventilated patients in ICUs in Asia. The results of this large study, to be disseminated through conference presentations and publications in international peer-reviewed journals, are of ultimate importance when designing trials of invasive ventilation in resource-limited ICUs. Access to source data will be made available through national or international anonymised datasets on request and after agreement of the PRoVENT-iMIC steering committee.NCT03188770; Pre-results.
Background: The SpO2 to FiO2 ratio (S/F) is an easy to obtain and widely available oxygenation index with proven prognostic value in ARDS patients. Aim: To ascertain the prognostic value of S/F and PEEP in COVID-19 ARDS patients. Methods: Multicenter observational study in 22 ICUs in the Netherlands. 867 patients were stratified into four risk groups using 190 as the cutoff for S/F and 10 cm H2O as the cutoff for PEEP, on the day of the start of ventilation (day 0) and after 24 hours (day 1). The primary outcome was 28-day mortality. Results: Risk stratification on day 0 resulted in groups with contrasting 28-day mortality and other endpoints; risk stratification on day 1 increased contrast in the outcomes. Conclusions: Risk classification using S/F and PEEP has prognostic value in COVID-19 ARDS patients, which improves with reclassification on day 1.
Introduction: Awake proning may result in lower intubation and mortality rates in COVID-19 patients with hypoxemia refractory to simple oxygen therapy. Aims: To summarize available evidence for benefit and develop a set of pragmatic recommendations for awake proning in COVID-19 patients. Methods: An international group of 43 healthcare professionals searched MEDLINE for articles on awake proning, and formulated recommendations for its use. Results: The professionals reached consensus regarding indications and contraindications, feasibility and safety; they recommended applying awake proning if SpO2/FiO2 < 315, or SpO2 < 93% under supplementary oxygen, and if patient is able to follow instructions. Severe hypoxemia (SpO2/FiO2 < 140) and hemodynamic instability are absolute contraindications in the ward, but relative contraindications in the ICU. Morbid obesity was also seen as a relative contraindication, depending on assistance needed to help turn the patient. Pregnancy was not seen as a contraindication, but extra monitoring in the last trimester was seen as mandatory, and extra pillows for stabilization and prevention of aortocaval compression are necessary. Five steps may improve safety: i. adequate patient information; ii. help in positioning; iii. ensuring oxygen supply and placing of tubing free at sight; iv. optimized position to prevent harm; and v. monitor oxygen saturation and respiratory rate. Dissensus remained regarding duration, and number of sessions per day, and use of sedation during prone positioning. Conclusion: Awake proning is an attractive, simple and safe way to improve oxygenation in hypoxemic COVID–19 patients. Studies remain needed to see if it effects intubation and mortality rates.
We determined the prevalences of hyperoxemia and excessive oxygen use, and the epidemiology, ventilation characteristics and outcomes associated with hyperoxemia in invasively ventilated patients with coronavirus disease 2019 (COVID–19). Post hoc analysis of a national, multicentre, observational study in 22 ICUs. Patients were classified in the first two days of invasive ventilation as 'hyperoxemic' or 'normoxemic'. The co–primary endpoints were prevalence of hyperoxemia (PaO2 > 90 mmHg) and prevalence of excessive oxygen use (FiO2 ≥ 60% while PaO2 > 90 mmHg or SpO2 > 92%). Secondary endpoints included ventilator settings and ventilation parameters, duration of ventilation, length of stay (LOS) in ICU and hospital, and mortality in ICU, hospital, and at day 28 and 90. We used propensity matching to control for observed confounding factors that may influence endpoints. Of 851 COVID–19 patients, 225 (26.4%) were classified as hyperoxemic. Excessive oxygen use occurred in 385 (45.2%) patients. Acute respiratory distress syndrome (ARDS) severity was lowest in hyperoxemic patients. Hyperoxemic patients were ventilated with higher positive end–expiratory pressure (PEEP), while rescue therapies for hypoxemia were applied more often in normoxemic patients. Neither in the unmatched nor in the matched analysis were there differences between hyperoxemic and normoxemic patients with regard to any of the clinical outcomes. In this cohort of invasively ventilated COVID–19 patients, hyperoxemia occurred often and so did excessive oxygen use. The main differences between hyperoxemic and normoxemic patients were ARDS severity and use of PEEP. Clinical outcomes were not different between hyperoxemic and normoxemic patients.
Low tidal volume ventilation (LTVV) is associated with mortality in patients with acute respiratory distress syndrome. We investigated the association of LTVV with mortality in COVID-19 patients.Secondary analysis of a national observational study in COVID-19 patients in the first wave of the pandemic. We compared COVID-19 patients that received LTVV, defined as controlled ventilation with a median tidal volume ≤ 6 mL/kg predicted body weight over the first 4 calendar days of ventilation, with patients that did not receive LTVV. The primary endpoint was 28-day mortality. In addition, we identified factors associated with use of LTVV.Of 903 patients, 294 (32.5%) received LTVV. Disease severity scores and ARDS classification was not different between the two patient groups. The primary endpoint, 28-day mortality, was met in 68 out of 294 patients (23.1%) that received LTVV versus in 193 out of 609 patients (31.7%) that did not receive LTVV (P < 0.001). LTVV was independently associated with 28-day mortality (HR, 0.68 (0.45 to 0.95); P = 0.025). Age, height, the initial tidal volume and continuous muscle paralysis was independently associated with use of LTVV.In this cohort of invasively ventilated COVID-19 patients, approximately a third of patients received LTVV. Use of LTVV was independently associated with reduced 28-day mortality. The initial tidal volume and continuous muscle paralysis were potentially modifiable factors associated with use of LTVV. These findings are important as they could help clinicians to recognize patients who are at risk of not receiving LTVV.
Summary Introduction High mechanical power is associated with mortality in patients who are critically ill and require invasive ventilation. It remains uncertain which components of mechanical power – volume, pressure or rate – increase mechanical power the most. Methods We conducted a post hoc analysis of a database containing individual patient data from three randomised clinical trials of ventilation in patients without acute respiratory distress syndrome. The primary endpoint was mechanical power. We used linear regression; double stratification to create subgroups of participants; and mediation analysis to assess the impact of changes in volumes, pressures and rates on mechanical power. Results A total of 1732 patients were included and analysed. The median (IQR [range]) mechanical power was 12.3 (9.3–17.1 [3.7–50.1]) J.min ‐1 . In linear regression, respiratory rate (36%) and peak pressure (51%) explained most of the increase in mechanical power. Increasing quintiles of peak pressure stratified on constant levels of respiratory rate resulted in higher risks of high mechanical power (relative risk 2.2 (95%CI 1.8–2.6), p < 0.01), while decreasing quintiles of respiratory rate stratified on constant levels of peak pressure resulted in lower risks of high mechanical power (relative risk 0.2 (95%CI 0.2–0.3), p < 0.01). Mediation analysis showed that a reduction in respiratory rate, with the increase in tidal volume, partially mediates an effect of reduction in mechanical power (average causal mediation effect ‐0.10, 95%CI ‐0.12 to ‐0.09, p < 0.01), but still with a direct effect of tidal volume on mechanical power (average direct effect 0.15, 95%CI 0.11–0.19, p < 0.01). Discussion In this cohort of patients without acute respiratory distress syndrome, pressure and respiratory rate were the most important determinants of mechanical power. The respiratory rate may be the most attractive ventilator setting to adjust when targeting a lower mechanical power.
Abstract Background Fluid therapy is a common intervention in critically ill patients. It is increasingly recognised that deresuscitation is an essential part of fluid therapy and delayed deresuscitation is associated with longer invasive ventilation and length of intensive care unit (ICU) stay. However, optimal timing and rate of deresuscitation remain unclear. Lung ultrasound (LUS) may be used to identify fluid overload. We hypothesise that daily LUS-guided deresuscitation is superior to deresuscitation without LUS in critically ill patients expected to undergo invasive ventilation for more than 24 h in terms of ventilator free-days and being alive at day 28. Methods The “effect of lung ultrasound-guided fluid deresuscitation on duration of ventilation in intensive care unit patients” (CONFIDENCE) is a national, multicentre, open-label, randomised controlled trial (RCT) in adult critically ill patients that are expected to be invasively ventilated for at least 24 h. Patients with conditions that preclude a negative fluid balance or LUS examination are excluded. CONFIDENCE will operate in 10 ICUs in the Netherlands and enrol 1000 patients. After hemodynamic stabilisation, patients assigned to the intervention will receive daily LUS with fluid balance recommendations. Subjects in the control arm are deresuscitated at the physician’s discretion without the use of LUS. The primary endpoint is the number of ventilator-free days and being alive at day 28. Secondary endpoints include the duration of invasive ventilation; 28-day mortality; 90-day mortality; ICU, in hospital and total length of stay; cumulative fluid balance on days 1–7 after randomisation and on days 1–7 after start of LUS examination; mean serum lactate on days 1–7; the incidence of reintubations, chest drain placement, atrial fibrillation, kidney injury (KDIGO stadium ≥ 2) and hypernatremia; the use of invasive hemodynamic monitoring, and chest-X-ray; and quality of life at day 28. Discussion The CONFIDENCE trial is the first RCT comparing the effect of LUS-guided deresuscitation to routine care in invasively ventilated ICU patients. If proven effective, LUS-guided deresuscitation could improve outcomes in some of the most vulnerable and resource-intensive patients in a manner that is non-invasive, easy to perform, and well-implementable. Trial registration ClinicalTrials.gov NCT05188092. Registered since January 12, 2022