We previously demonstrated that APP epigenetically regulates Egr1 expression both in cultured neurons and in vivo. Since Egr1 is an immediate early gene involved in memory formation, we wondered whether other early genes involved in memory were regulated by APP and we studied molecular mechanisms involved. By comparing prefrontal (PF) cortex from wild type (APP+/+) and APP knockout mice (APP−/−), we observed that APP down regulates expression of four immediate early genes, Egr1, c-Fos, Bdnf and Arc. Down regulation of Egr1, c-Fos and Bdnf transcription resulted from a decreased enrichment of acetylated histone H4 on the corresponding gene promoter. Further characterization of H4 acetylation at Egr1 and c-Fos promoters revealed increased acetylation of H4K5 and H4K12 residues in APP−/− mice. Whereas APP affected Egr1 promoter activity by reducing access of the CREB transcription factor, its effect on c-Fos appeared to depend on increased recruitment of HDAC2 histone deacetylase to the gene promoter. The physiological relevance of the epigenetic regulation of Egr1 and c-Fos gene transcription by APP was further analyzed following exposure of mice to novelty. Although transcription of Egr1 and c-Fos was increased following exposure of APP+/+ mice to novelty, such an induction was not possible in APP−/− mice with a high basal level of expression of these immediate early genes. Altogether, these results demonstrate that APP-mediated regulation of c-Fos and Egr1 by different epigenetic mechanisms is needed for their induction during exposure to novelty.
Mechanisms driving cognitive improvements following nuclear receptor activation are poorly understood. The peroxisome proliferator–activated nuclear receptor alpha (PPARα) forms heterodimers with the nuclear retinoid X receptor (RXR). We report that PPARα mediates the improvement of hippocampal synaptic plasticity upon RXR activation in a transgenic mouse model with cognitive deficits. This improvement results from an increase in GluA1 subunit expression of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, eliciting an AMPA response at the excitatory synapses. Associated with a two times higher PPARα expression in males than in females, we show that male, but not female, PPARα null mutants display impaired hippocampal long-term potentiation. Moreover, PPARα knockdown in the hippocampus of cognition-impaired mice compromises the beneficial effects of RXR activation on synaptic plasticity only in males. Furthermore, selective PPARα activation with pemafibrate improves synaptic plasticity in male cognition-impaired mice, but not in females. We conclude that striking sex differences in hippocampal synaptic plasticity are observed in mice, related to differences in PPARα expression levels.
We have previously showed in vitro that Ca2+ entry through TRPC1 ion channels regulates myoblasts migration and differentiation by activating calpain, a Ca2+-dependent protease which cleaves myristoylated alanine-rich C-kinase substrate (MARCKS) protein to allow myoblasts migration. To explore, in vivo, whether the absence of TRPC1 channel impairs skeletal muscle regeneration, we used cardiotoxin injections to induce muscle injury in adult TRPC1 +/+ and TRPC1-/- mice. Interestingly, we observed that regenerated TRPC1-/- muscles had a smaller fibre size and a decreased specific force respectively after 10 and 14 days of regeneration. We also observed an increase of central nuclei at day 14 of regeneration in TRPC1-/- whereas, at this stage, in TRPC1+/+ muscles, nuclei were essentially situated in the periphery of the fibres. These observations indicate a delay in muscle regeneration in TRPC1-/- mice in comparison with their controls. To understand the molecular mechanisms which sustain this delayed regeneration in TRPC1-/- mice, we investigated myogenic transcription factors implicated in the control of myogenesis. In comparison with TRPC1-/-, TRPC1+/+ muscles showed an earlier increase of the mRNA level and of the protein expression of MyoD , Myf5 and myogenin. Interestingly, developmental Myosin Heavy Chain (MHCd), a well known downstream target of MyoD during muscle regeneration, was also expressed earlier in TRPC1+/+ than in TRPC1 -/- muscles. Finally, we also observed a more important and earlier phosphorylation of both Akt and P70S6k in TRPC1+/+ muscles than in TRPC1-/- muscles, suggesting, as previously reported, an involvement of Akt / mTOR/ P70S6k pathway in the control of protein synthesis, muscles fibres size and muscle regeneration in vivo. Altogether, our results demonstrate the importance of TRPC1 channels in skeletal muscles development both in vitro and in vivo and identify Akt / mTOR / P70S6K as the main pathway affected in TRPC1 -/- during muscle regeneration in vivo.
The purpose of the present work was to progress in our understanding of the pathophysiology of L-2-hydroxyglutaric aciduria, due to a defect in L-2-hydroxyglutarate dehydrogenase, by creating and studying a mouse model of this disease. L-2-hydroxyglutarate dehydrogenase-deficient mice (l2hgdh-/-) accumulated L-2-hydroxyglutarate in tissues, most particularly in brain and testis, where the concentration reached ≈ 3.5 μmol/g. Male mice showed a 30% higher excretion of L-2-hydroxyglutarate compared to female mice, supporting that this dicarboxylic acid is partially made in males by lactate dehydrogenase C, a poorly specific form of this enzyme exclusively expressed in testes. Involvement of mitochondrial malate dehydrogenase in the formation of L-2-hydroxyglutarate was supported by the commensurate decrease in the formation of this dicarboxylic acid when down-regulating this enzyme in mouse l2hgdh-/- embryonic fibroblasts. The concentration of lysine and arginine was markedly increased in the brain of l2hgdh-/- adult mice. Saccharopine was depleted and glutamine was decreased by ≈ 40%. Lysine-α-ketoglutarate reductase, which converts lysine to saccharopine, was inhibited by L-2-hydroxyglutarate with a Ki of ≈ 0.8 mM. As low but significant activities of the bifunctional enzyme lysine-α-ketoglutarate reductase/saccharopine dehydrogenase were found in brain, these findings suggest that the classical lysine degradation pathway also operates in brain and is inhibited by the high concentrations of L-2-hydroxyglutarate found in l2hgdh-/- mice. Pathological analysis of the brain showed significant spongiosis. The vacuolar lesions mostly affected oligodendrocytes and myelin sheats, as in other dicarboxylic acidurias, suggesting that the pathophysiology of this model of leukodystrophy may involve irreversible pumping of a dicarboxylate in oligodendrocytes. Neurobehavioral testing indicated that the mice mostly suffered from a deficit in learning capacity. In conclusion, the findings support the concept that L-2-hydroxyglutaric aciduria is a disorder of metabolite repair. The accumulation of L-2-hydroxyglutarate exerts toxic effects through various means including enzyme inhibition and glial cell swelling.