Abstract Background Bone marrow mesenchymal stem cells (BMSCs) have been used as important cell-based tools for clinical applications. Oxidative stress-induced apoptosis causes a low survival rate after transplantation, and the underlying mechanisms remain unknown. The endoplasmic reticulum (ER) and mitochondria are vital organelles regulated by adenosine monophosphate (AMP)-activated protein kinase (AMPK), especially during oxidative stress injury. Melatonin exerts an antioxidant effect by scavenging free radicals. Here, we aimed to explore whether cytoprotective melatonin relieves ER stress-mediated mitochondrial dysfunction through AMPK in BMSCs after oxidative stress injury. Methods Mouse BMSCs were isolated and exposed to H 2 O 2 in the absence or presence of melatonin. Thereafter, cell damage, oxidative stress levels, mitochondrial function, AMPK activity, ER stress-related proteins, and apoptotic markers were measured. Additionally, the involvement of AMPK and ER stress in the melatonin-mediated protection of BMSCs against H 2 O 2 -induced injury was investigated using pharmacologic agonists and inhibitors. Results Melatonin improved cell survival and restored mitochondrial function. Moreover, melatonin intimately regulated the phosphorylation of AMPK and molecules associated with ER stress pathways. AMPK activation and ER stress inhibition following melatonin administration improved the mitochondrial membrane potential (MMP), reduced mitochondria-initiated oxidative damage, and ultimately suppressed apoptotic signaling pathways in BMSCs. Cotreatment with N -acetyl- l -cysteine (NAC) significantly enhanced the antioxidant effect of melatonin. Importantly, pharmacological AMPK activation/ER stress inhibition promoted melatonin-induced cytoprotection, while pharmacological AMPK inactivation/ER stress induction conferred resistance to the effect of melatonin against H 2 O 2 insult. Conclusions Our data also reveal a new, potentially therapeutic mechanism by which melatonin protects BMSCs from oxidative stress-mediated mitochondrial apoptosis, possibly by regulating the AMPK-ER stress pathway.
Memory impairment is one of the neuropsychological effects of hypobaric hypoxia (HH), which can be associated with programmed cell death, such as apoptosis and ferroptosis. Emerging evidence indicates crosstalk between apoptosis and ferroptosis, while the crosstalk between HH-induced apoptosis and ferroptosis in the hippocampus has not been clarified. Here, microarray profiles were extracted to analyze the differentially expressed genes with and without HH exposure, and keratin 18 (Krt18) was found to be a potential gene related to both apoptosis and ferroptosis. Then, we conducted morphological observations that showed that apoptosis and ferroptosis coexisted in the rat hippocampus after HH exposure. Combined with the real-time q-PCR analysis, the mRNA expression of Krt18 decreased significantly after HH exposure for 1 day and 3 days, and Mapk10 (JNK3) was upregulated at the corresponding time points. After exposure for 7 days, Krt18 and JNK3 showed no significant change. In conclusion, Krt18 may regulate apoptosis and ferroptosis simultaneously, possibly via the JNK signaling pathway, which might provide a potential central target for apoptosis and ferroptosis in hippocampal injury after HH exposure.
The most severe challenge for troops in a high-altitude environment is hypoxia. Pressure swing adsorption coupled with membrane separation is an ideal solution for oxygen production in high-altitude areas, but the molecular sieve membranes and organic membranes used in this technique are greatly affected by the ambient temperature, humidity, and pressure. Compared with traditional porous materials, metal-organic frameworks (MOFs) have outstanding features such as low densities, large specific surface areas, high crystallinities, and flexible structures. Cr-MIL-101 (MIL: Matérial Institut Lavoisier) and its derivatives are MOFs with high nitrogen adsorption capacities and can be used for oxygen production by air separation. However, since the plateau climate is complex, the applicability of Cr-MIL-101 for oxygen production in high-altitude environments awaits clarification. Therefore, this study constructed a molecular model of Cr-MIL-101, simulated the adsorption equilibrium of N2 and O2 molecules on this material using the grand canonical Monte Carlo (GCMC) method, and obtained their adsorption isotherms and densities. At 298 K and 100 kPa, the maximum adsorption capacities of Cr-MIL-101 for N2 and O2 were 0.94 per cell and 0.23 per cell, respectively. While at 238 K and 100 kPa, the maximum adsorption amounts of Cr-MIL-101 for N2 and O2 were 5.10 and 1.07 per cell, respectively. The thermodynamic parameters and adsorption equilibrium parameters during the adsorption process were analyzed. The conclusion of this study provides theoretical support for optimizing the N2/O2 separation performance of Cr-MIL-101 in high-altitude environments.
This study aims to investigate the impact of lovastatin on neuroinflammation in 6-OHDA-treated microglia cells.6-Hydroxydopamine (6-OHDA)-treated microglia cells were used to investigate the neuroprotective nature of lovastatin. After incubation with 6-OHDA and/or lovastatin for 24 h, test kits were used to detect the levels of LDH and glutamate, which were released from PC12 cells exposed to different culture media. The mRNA levels of TNF-α, IL-6 and IL-1β were determined by RT-PCR and the protein levels were analyzed by Western blot.LDH and glutamate levels in 6-OHDA-incubated PC12 cells increased, when compared with those in the controls, while incubation with lovastatin inhibited this elevation. The expression levels of TNF-α IL-6 and IL-1β were significantly upregulated after treatment with 6-OHDA. The 6-OHDA-stimulated mRNA and protein levels of TNF-α IL-6 and IL-1β were reduced by lovastatin.Our results suggest that Lovastatin is able to induce neuroprotection by inhibiting inflammatory cytokines. The data provide direct evidence of the potential application of lovastatin for the treatment of neuroinflammatory diseases.
Abstract Growing evidence has shown that pulsed electromagnetic fields (PEMF) can modulate bone metabolism in vivo and regulate the activities of osteoblasts and osteoclasts in vitro. Osteocytes, accounting for 95% of bone cells, act as the major mechanosensors in bone for transducing external mechanical signals and producing cytokines to regulate osteoblastic and osteoclastic activities. Targeting osteocytic signaling pathways is becoming an emerging therapeutic strategy for bone diseases. We herein systematically investigated the changes of osteocyte behaviors, functions, and its regulation on osteoclastogenesis in response to PEMF. The osteocyte‐like MLO‐Y4 cells were exposed to 15 Hz PEMF stimulation with different intensities (0, 5, and 30 Gauss [G]) for 2 hr. We found that the cell apoptosis and cytoskeleton organization of osteocytes were regulated by PEMF with an intensity‐dependent manner. Moreover, PEMF exposure with 5 G significantly inhibited apoptosis‐related gene expression and also suppressed the gene and protein expression of the receptor activator of nuclear factor κB ligand/osteoprotegerin (RANKL/OPG) ratio in MLO‐Y4 cells. The formation, maturation, and osteoclastic bone‐resorption capability of in vitro osteoclasts were significantly suppressed after treated with the conditioned medium from PEMF‐exposed (5 G) osteocytes. Our results also revealed that the inhibition of osteoclastic formation, maturation, and bone‐resorption capability induced by the conditioned medium from 5 G PEMF‐exposed osteocytes was significantly attenuated after abrogating primary cilia in osteocytes using the polaris siRNA transfection. Together, our findings highlight that PEMF with 5 G can inhibit cellular apoptosis, modulate cytoskeletal distribution, and decrease RANKL/OPG expression in osteocytes, and also inhibit osteocyte‐mediated osteoclastogenesis, which requires the existence of primary cilia in osteocytes. This study enriches our basic knowledge for further understanding the biological behaviors of osteocytes and is also helpful for providing a more comprehensive mechanistic understanding of the effect of electromagnetic stimulation on bone and relevant skeletal diseases (e.g., bone fracture and osteoporosis).
Acute high-altitude hypoxia can lead to intestinal damage and changes in gut microbiota. Sustained and reliable oxygen enrichment can resist hypoxic damage at high altitude to a certain extent. However, it remains unclear whether oxygen enrichment can protect against gut damage and changes in intestinal flora caused by acute altitude hypoxia. For this study, eighteen male Sprague–Dawley rats were divided into three groups, control (NN), hypobaric hypoxic (HH), and oxygen-enriched (HO). The NN group was raised under normobaric normoxia, whereas the HH group was placed in a hypobaric hypoxic chamber simulating 7,000 m for 3 days. The HO group was exposed to oxygen-enriched air in the same hypobaric hypoxic chamber as the HH group for 12 h daily. Our findings indicate that an acute HH environment caused a fracture of the crypt structure, loss of epithelial cells, and reduction in goblet cells. Additionally, the structure and diversity of bacteria decreased in richness and evenness. The species composition at Phylum and Genus level was characterized by a higher ratio of Firmicutes and Bacteroides and an increased abundance of Lactobacillus with the abundance of Prevotellaceae_NK3B31_group decreased in the HH group. Interestingly, after oxygen enrichment intervention, the intestinal injury was significantly restrained. This was confirmed by an increase in the crypt depth, intact epithelial cell morphology, increased relative density of goblet cells, and higher evenness and richness of the gut microbiota, Bacteroidetes and Prevotellaceae as the main microbiota in the HO group. Finally, functional analysis showed significant differences between the different groups with respect to different metabolic pathways, including Amino acid metabolism, energy metabolism, and metabolism. In conclusion, this study verifies, for the first time, the positive effects of oxygen enrichment on gut structure and microbiota in animals experiencing acute hypobaric hypoxia.
Abundant evidence has substantiated the positive effects of pulsed electromagnetic fields (PEMF) and static magnetic fields (SMF) on inhibiting osteopenia and promoting fracture healing. However, the osteogenic potential of rotating magnetic fields (RMF), another common electromagnetic application modality, remains poorly characterized thus far, although numerous commercial RMF treatment devices have been available on the market. Herein the impacts of RMF on osteoporotic bone microarchitecture, bone strength and bone metabolism were systematically investigated in hindlimb-unloaded (HU) rats. Thirty two 3-month-old male Sprague-Dawley rats were randomly assigned to the Control (n = 10), HU (n = 10) and HU with RMF exposure (HU+RMF, n = 12) groups. Rats in the HU+RMF group were subjected to daily 2-hour exposure to moderate-intensity RMF (ranging from 0.60 T to 0.38 T) at 7 Hz for 4 weeks. HU caused significant decreases in body mass and soleus muscle mass of rats, which were not obviously altered by RMF. Three-point bending test showed that the mechanical properties of femurs in HU rats, including maximum load, stiffness, energy absorption and elastic modulus were not markedly affected by RMF. µCT analysis demonstrated that 4-week RMF did not significantly prevent HU-induced deterioration of femoral trabecular and cortical bone microarchitecture. Serum biochemical analysis showed that RMF did not significantly change HU-induced decrease in serum bone formation markers and increase in bone resorption markers. Bone histomorphometric analysis further confirmed that RMF showed no impacts on bone remodeling in HU rats, as evidenced by unchanged mineral apposition rate, bone formation rate, osteoblast numbers and osteoclast numbers in cancellous bone. Together, our findings reveal that RMF do not significantly affect bone microstructure, bone mechanical strength and bone remodeling in HU-induced disuse osteoporotic rats. Our study indicates potentially obvious waveform-dependent effects of electromagnetic fields-stimulated osteogenesis, suggesting that RMF, at least in the present form, might not be an optimal modality for inhibiting disuse osteopenia/osteoporosis.