Recent public demonstrations showed that a system based on imagination does not always work (1). On the other side predicting limb movement based on scalp activity has proved to be hazardous (2) and thus other alternatives are needed. This paper describes the asynchronous Geneva-BCI based on EEG and visual attention to external stimulus able to send commands every 0.5 (or 0.25) seconds with very high (98.88%) correct classification rates and optimal (178 bits/min) theoretical bit rate. This high performance allows for the distant real time control of robots using four commands.
The potential of Brain Computer Interfaces (BCIs) to translate brain activity into commands to control external devices during mechanical ventilation (MV) remains largely unexplored. This is surprising since the amount of patients that might benefit from such assistance is considerably larger than the number of patients requiring BCI for motor control. Given the transient nature of MV (i.e., used mainly over night or during acute clinical conditions), precluding the use of invasive methods, and inspired by current research on BCIs, we argue that scalp recorded EEG (electroencephalography) signals can provide a non-invasive direct communication pathway between the brain and the ventilator. In this paper we propose a Patient Ventilator Interface (PVI) to control a ventilator during variable conscious states (i.e., wake, sleep, etc.). After a brief introduction on the neural control of breathing and the clinical conditions requiring the use of MV we discuss the conventional techniques used during MV. The schema of the PVI is presented followed by a description of the neural signals that can be used for the on-line control. To illustrate the full approach, we present data from a healthy subject, where the inspiration and expiration periods during voluntary breathing were discriminated with a 92% accuracy (10-fold cross-validation) from the scalp EEG data. The paper ends with a discussion on the advantages and obstacles that can be forecasted in this novel application of the concept of BCI.
Modern electrophysiological studies in animals show that the spectrum of neural oscillations encoding relevant information is broader than previously thought and that many diverse areas are engaged for very simple tasks. However, EEG-based brain-computer interfaces (BCI) still employ as control modality relatively slow brain rhythms or features derived from preselected frequencies and scalp locations. Here, we describe the strategy and the algorithms we have developed for the analysis of electrophysiological data and demonstrate their capacity to lead to faster accurate decisions based on linear classifiers. To illustrate this strategy, we analyzed two typical BCI tasks. (1) Mu-rhythm control of a cursor movement by a paraplegic patient. For this data, we show that although the patient received extensive training in mu-rhythm control, valuable information about movement imagination is present on the untrained high-frequency rhythms. This is the first demonstration of the importance of high-frequency rhythms in imagined limb movements. (2) Self-paced finger tapping task in three healthy subjects including the data set used in the BCI-2003 competition. We show that by selecting electrodes and frequency ranges based on their discriminative power, the classification rates can be systematically improved with respect to results published thus far.
This paper discusses theoretical aspects of the modeling of the sources of the EEG (i.e., the bioelectromagnetic inverse problem or source localization problem). Using the Helmholtz decomposition (HD) of the current density vector (CDV) of the primary current into an irrotational ( I ) and a solenoidal ( S ) part we show that only the irrotational part can contribute to the EEG measurements. In particular we present for the first time the HD of a dipole and of a pure irrotational source. We show that, for both kinds of sources, I extends all over the space independently of whether the source is spatially concentrated (as the dipole) or not. However, the divergence remains confined to a region coinciding with the expected location of the sources, confirming that it is the divergence rather than the CDV that really defines the spatial extension of the generators, from where it follows that an irrotational source model (ELECTRA) is always physiologically meaningful as long as the divergence remains confined to the brain. Finally we show that the irrotational source model remains valid for the most general electrodynamics model of the EEG in inhomogeneous anisotropic dispersive media and thus far beyond the (quasi) static approximation.